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Abstract: 

 A critical problem facing agriculture today is being able to consistently and 

sustainably provide plants with adequate nutrients for growth. With this problem being 

exacerbated by the ever-increasing human population, new perspectives and techniques 

are required to ensure global food security. In order to fully realize potential solutions, 

however, plant growth and nutrition cannot be exclusively focused upon. The soil-

microorganism-plant system is comprised of many interconnected and interdependent 

processes that together support plant growth: it is upon these processes that the focus 

must be placed. In this work, the agromineral Spanish River Carbonatite (SRC) is 

characterized using the framework of the soil-microorganism-plant system with the pea 

Pisum sativum L. as a model crop plant. The overall objective of confirming the potential 

usefulness of SRC as an agricultural amendment was divided into three sub-objectives. 

First, the optimal concentration of SRC that most benefits the soil, microorganisms, and 

plants, was determined. Second, the impact of SRC on the agriculturally-important 

symbiosis between pea and rhizobia was assessed. Third, the effect of storage conditions 

on SRC’s usefulness as an agricultural supplement was preliminarily examined. Overall, 

it was hypothesized that the addition of SRC at an optimal concentration would result in 

increased plant growth, because SRC is a source of a wide variety of nutrients. 

Importantly, it was verified that SRC is capable of acting as such a nutrient source for 

plants, and that its addition into the soil enhanced the efficiency of the rhizobia-pea 

symbiosis resulting in benefits to plant growth. Preliminary results also indicate that 

beneficial microorganisms are present within SRC, but are negatively influenced by 

current storage methods. By using a perspective that took into account soil properties and 

microorganisms in addition to plant responses, it was possible to examine the effect of 

SRC on the underlying soil-microorganism-plant processes. The findings presented here 

provide evidence that agrominerals such as SRC are potentially powerful tools for 

agriculture and that in studying the complexities of plant nutrition the whole soil-

microbe-plant system must be taken into consideration.  
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Chapter 1: General introduction and literature review 

 

 By the year 2050, the total global population is projected to reach 9.1 billion persons and 

developing countries are expected to experience the most growth (Roy et al. 2006). Because of 

the population increase, there is a need for improvements in the efficiency of agricultural 

practices to meet the needs of the population without encroaching on land required for other uses 

such as environmental conservation (Sayer et al. 2013). The use of both chemical fertilizers and 

organic agricultural practices has allowed great advances in crop production. Despite these 

advances, however, a persistent problem is to provide plants with sufficient nutrients for their 

optimal growth and yield. This problem is exacerbated by the need to make agriculture less 

damaging to the environment. New approaches and tools are thus needed to ensure both 

agricultural sustainability and food security for future generations.  

 

Section 1: The Challenge of Plant Nutrition 

 Two main strategies have been used to address plant nutrition in agricultural systems: the 

use of organic nutrient sources (e.g., compost) and that of synthetic nutrient sources (e.g., 

chemical fertilizers). The benefits and drawbacks of each of these approaches are covered below.  

 

1.1: Organic nutrient sources 

 Commonly, animal wastes/manure (Brandt and Mølgaard 2001; Tilman et al. 2002; Ge et 

al. 2011), plant residues (Stanhill 1990), and crop rotations with nitrogen-fixing symbiotic 

legumes (Brandt and Mølgaard 2001; MacWilliam et al. 2014) are used singly or in combination 

as organic nutrient sources for plants. Several positive outcomes have resulted from the use of 
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these organic nutrient sources when compared to the use of synthetic nutrient sources. First, an 

increase in the diversity of predatory ground (Family Carabidae) and rove beetles (Family 

Staphylinidae) was seen when comparing organic and synthetic fertilization methods in a study 

by Pfiffner and Niggli (1996); these organisms feed on pest organisms and can act as biological 

pest control agents (Zehdner et al. 2007). Second, the use of manure as a nutrient source can 

mediate soil organic matter deficiency and enhance the diversity of the soil microbial community 

(Zhang et al. 2012). The more types of microorganisms that perform a given soil process, such as 

nitrogen fixation, the more the soil as a whole can maintain those processes in the event of 

disturbances (Allison and Martiny 2008). Finally, organic fertilization has also been linked with 

higher soil-aggregate stability (Mäder et al. 2002) and higher soil organic carbon levels 

(Fließbach and Mäder 2000; Marschner et al. 2003). More stable soil aggregates and increased 

soil organic matter can lead to an improved ability of the soil-plant system to utilize available 

nutrients (Mäder et al. 2002).  

 Although the use of organic fertilizers has been proposed as being vital for reducing the 

environmental impact of agriculture, it comes with drawbacks. First, the usefulness of organic 

nutrient sources depends on the specific environments and methods utilized (Flohre et al. 2011; 

Toumisto et al. 2012), and the yields obtained from organically-fertilized systems are typically at 

least 20% lower than those of chemically-fertilized systems (Trewavas 2001; Mäder et al. 2002). 

Furthermore, biodiversity may not actually be improved by organic nutrient sources systems over 

synthetically-fertilized systems. A critical meta-analysis of the impact of organic versus 

conventional fertilization on overall biodiversity indicated that the biodiversity gains depend 

largely on the type of organisms (e.g., predatory or non-predatory insects) in question and the 

landscape surrounding the study area (Bengtsson et al. 2005). Importantly, it was found that 

previous studies did not always properly account for landscape differences between compared 

plots and this likely skewed the obtained results. For example, a crop field next to a forest will 
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generally have higher overall biodiversity than a crop field next to more fields, regardless of 

agricultural practices. There are simply more organisms in forests that can migrate to these fields. 

Finally, it has also been suggested that because organic fertilizers rely on means other than 

chemical fertilizers to replace nutrients, they cause overall soil nutrient deficits that further impact 

yield (Trewavas 2001). Clearly, the use of organic nutrient sources does not appear sufficient for 

meeting the needs of the global population. But how do synthetic fertilizers compare? 

 

1.2: Chemical/Synthetic nutrient sources  

 Conventional agricultural methods have taken advantage of industrialization, and these 

methods arose largely out of the need to use pre-existing farmlands more intensely (Matson et al. 

1997). The prerequisite to agricultural intensification was the invention of chemical/synthetic 

fertilizers, which have since become a key tool for agriculture. These fertilizers are water-soluble, 

and used primarily to add nitrogen, phosphorous, and potassium to soil systems. Synthetic 

fertilizers are employed to ensure plants have sufficient nutrition for growth and also help to 

obviate nutrient depletion in the soil caused by removal of nutrients from plant harvesting (van 

Straaten 2007, p. 6). The premise behind fertilizer production is to turn large stores of nutrients 

that are not easily available to plants into forms that plants can easily access. Thus, atmospheric 

nitrogen gas is reacted through the Haber-Bosch process to create N fertilizers (White and Brown 

2010); apatite minerals that are rich in P are treated with sulfuric acid to form superphosphate 

fertilizers (van Straaten 2007, p. 134-136); and potash is used for K fertilizers (Darst 1991). 

Compound fertilizers that contain N, P and K are the types most frequently employed, and these 

fertilizers are manufactured through combinations of the aforementioned processes (van Straaten 

2007, p. 327). 



 

4 

 

 The direct benefit of chemical fertilizers is that the nutrients required for plant growth are 

available for plant uptake as soon as the fertilizers are added to soils. This benefit is especially 

apparent when comparing the yield of crops given chemical fertilizers to that of crops that had 

access only to nutrients that were already present in the soil, as seen in the following examples.  

A two-fold increase in the kg ha
-1

 yield of rice and a four-fold increase in the kg ha
-1

 yield of 

wheat with NPK fertilizer use were seen in a study by Yadav et al. (2000). Significant increases 

from NPK fertilizer use on the kg ha
-1

 yields of cowpea, peanut, and maize were found by 

Yamato et al. (2006).  Although chemical fertilizers have proven to be incredibly beneficial for 

increasing crop yield, their overuse has come with two major environmental costs both within and 

outside the area they are used in. First, when compared to that of organic methods, application of 

chemical fertilizers has been linked with decreases in biodiversity (Pfiffner and Niggli 1996; Oehl 

et al. 2004; Zhang et al. 2012) and detrimental soil changes (Mäder et al. 2002; Marschner et al. 

2003) that decrease nutrient use efficiency (Mäder et al. 2002). Second, those nutrients not taken 

up by plants or not absorbed by the soil can be rapidly flushed out into nearby waterways during 

heavy rain (Royer et al. 2006; Savard et al. 2010). The influx of easily-accessible nutrients into 

neighbouring water bodies promotes their eutrophication (Schindler 1974) and the development 

of extensive algal blooms (Diaz and Rosenberg 2008) which can contaminate drinking water 

supplies (Savard et al. 2010). In particular, algal blooms can alter water quality and food-webs by 

creating hypoxic/anoxic water conditions over areas in excess of a thousand square kilometers 

(Diaz and Rosenberg 2008). Therefore, it is obvious that over-reliance on chemical fertilizers 

comes with drastic environmental consequences and as such, these fertilizers should not be relied 

upon exclusively as a nutrient source for crops.  
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1.3: An integrated approach 

 The benefits of organic fertilizer use are directly related to the drawbacks of chemical 

fertilizer use, and vice versa, the benefits of organic nutrient sources are related to the drawbacks 

of chemical nutrient sources. Each of these approaches is aimed at achieving the same end 

through different means, and an integrated method that takes advantage of techniques used by 

both fertilization practices could prove to be the most beneficial. Such an integrated approach has 

been emphasized by the Food and Agriculture Organization of the United Nations in a report on 

achieving food security (Roy et al. 2006).  An example of the potential of this integrated 

approach is seen in the findings of Zhong et al. (2010) during a four-year fertilizer trial in China 

using maize as the model crop. Across all four years, a combination of organic manure and 

chemical fertilizer used together consistently resulted in a 1.7-fold increase in the kg ha
-1

 yields 

over those crops receiving only NPK fertilizer. However, in order for an integrated approach to 

achieve maximum potential, the plant-microbe-soil system must be understood as a set of 

interconnected and interdependent subsystems.  

 

Section 2: The agropyramid - a visualization of the interconnected soil processes 

 The various interconnected soil processes that support plant growth can be viewed 

schematically as an ‘agropyramid’ (Figure 1.1) with four levels. The first level designated as such 

because this is where most humans focus their attention is plant growth. Plant growth is 

dependent upon proper plant  
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Figure 1.1: The ‘agropyramid’; a schematic representation of interacting soil system components 

that support plant growth and nutrition. Level I is the main focus of agriculture: plant growth and 

nutrition. Level II supports the first level, and reflects the balance between mobilization and 

immobilization of nutrients in the soil. Level III highlights some soil microorganisms that help 

mobilize nutrients for plant growth. The base of the pyramid, level IV, is made of the components 

and properties that make up the soil. Each level both depends on and interacts with those levels 

below it.  
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nutrition, which leads us to the second level: the balance between nutrient mobilization and 

immobilization. Although it is often necessary that nutrients be made available to plants through 

mobilization, excess mobilization must be avoided to minimize nutrient leaching. On the third 

level are soil microorganisms; these are crucial for cycling nutrients within soil ecosystems.  

However, microorganisms require organic matter and other soil substrates to maintain healthy 

populations. The soil influences on microorganism growth are found in level four: the physical 

structure of the soil, its organic and mineral components, and resulting chemical properties (such 

as pH). Although the layers underlying plant growth are often disregarded by the layperson, they 

are nonetheless essential. These four levels will be covered in further depth in the following 

sections. 

 

2.1: Level I - Plant growth 

 2.1.1: Pea: a model crop plant 

 In this thesis, the focus will be on the pea plant (Pisum sativum L.). Pea is an important 

crop, with over 53,000 tonnes produced in Canada in 2013 (FAO 2015). In agriculture, pea is a 

food source for both humans and livestock, and it has use in crop rotations as a source of nitrogen 

(MacWilliam et al. 2014). In the lab, pea plants are relatively quick and easy to grow, and are 

smaller than many other crop plants. These attributes and others have led to the use of pea as a 

model organism in genetics (e.g., Weller et al. 1997), in plant physiology (e.g., Berry and Aitken 

1979), and in examining the development of mutualisms with soil microorganisms (e.g., Voisin et 

al. 2010; Balzergue et al. 2011). Therefore, a large body of research for this species is available 

to draw upon, and the responses of both symbiotic and non-symbiotic plants to treatment can be 

assessed in a single system. The following sections will therefore be specific to peas where 

applicable. 
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 2.1.2: Plant nutrients 

 Plants require at least fourteen essential nutrients in addition to carbon, oxygen and 

water, and if not present in adequate concentrations these can limit plant growth and yield (White 

and Brown 2010). Different plant species have different requirements for nutrients (Masclaux-

Daubresse et al. 2010), and this must be taken into consideration during their cultivation as 

deficiencies or toxic excesses of nutrients can impact plant health. The nutrients most often 

limiting plant growth are nitrogen, phosphorus and potassium. 

 Nitrogen is an essential constituent of all nucleic acids and proteins and is therefore 

required in high amounts by plants.  Nitrogen in the soil can take a number of different forms; of 

importance to plant nutrition are organic nitrogen compounds (such as amino acids), ammonium 

(NH4
+
), and nitrate (NO3

-
). These forms interchange constantly as a result of microbial action and 

environmental conditions (Richardson et al. 2009). Nitrogen enters the soil primarily through 

microbial fixation of atmospheric nitrogen or decomposition of biological material (Richardson et 

al. 2009). It can then be taken up by plant roots either as part of an organic compound or as 

ammonium or nitrate. This is accomplished through mass flow along with water into the root and 

through specialized transport proteins (Richardson et al. 2009). 

 Phosphorus is a principal component of plant cellular macromolecules, and it participates 

in both cell energetics and the regulation of many cytosolic and nuclear processes (Duff et al. 

1994). It is most often taken up as the orthophosphate anion PO4
-
.  Although it may be present in 

great concentrations within the soil system, only a small proportion of phosphorus is available for 

uptake by plants at a given time (Richardson et al. 2009). Natural phosphorus is made available 

through the slow physical and chemical weathering of minerals already present within the soil 

(Vitousek et al. 2010). Because the speed of weathering is often insufficient to support plant 

growth, the recycling of phosphorus in an ecosystem is typically necessary to ensure adequate 



 

9 

 

plant P nutrition (Richardson et al. 2009). This recycling is achieved through decomposition of 

organic matter which allows plants to access biologically active forms of phosphorus.     

 Also necessary for proper cellular functioning in plants is potassium, which is involved in 

balancing cell electrical neutrality, triggering chemical reactions and maintaining osmotic 

pressure (Maathuis and Sanders 1996).   Potassium is directly available to plants in cationic form 

(K
+
), and is taken up through mass action with water and through specialized protein channels 

(Maathuis and Sanders 1996).   

 

2.2: Level II - Nutrient cycling 

 Although ensuring optimal concentrations of these nutrients for growth and yield is of 

prime importance, this cannot be achieved without the underlying processes that make these 

nutrients available. Therefore, directly supporting plant growth is the cycling of nutrients within a 

soil system, and the delicate balance between mobilization and immobilization of nutrients 

(Figure 1.1, level II). Mobilization encompasses the release of nutrients into forms that plants can 

take up, and these nutrients can be liberated from organic matter through decomposition or 

through the weathering of minerals (Dungait et al. 2012). Obviously, a certain level of 

mobilization is required for plants to achieve maximum growth and yield (Dungait et al. 2012), 

but excessive mobilization can lead to nutrient runoff (Savard et al. 2010). Mobilization of 

nitrogen is achieved through the breakdown of organic compounds such as amino acids by fungi 

and bacteria, or the interconversion of N2 - NH4
+
 - NO3

-  
through the action of both types of 

microorganisms (Powlson 1993; Richardson et al. 2009). Conversely, phosphorus and potassium 

are mobilized through weathering and solubilization of minerals (Richardson et al. 2009), or are 

released from organic matter. The process of mobilization is mimicked by the production of 

chemical fertilizers; both make nutrients available for plant uptake. 

Acting counter to mobilization is immobilization or the sequestration of nutrients so that 

these become unavailable to plants. Nutrients can become immobilized when they are taken up by 
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organisms as part of their nutrition or become incorporated into the soil minerals (Dungait et al. 

2012). Nitrogen, phosphorus, and potassium are typically immobilized when they are taken up by 

organisms and become part of the cellular composition, although adsorption of phosphorus 

(Vitousek et al. 2010) and potassium (Kayser and Isselstein 2005) onto soil particles can also 

immobilize these nutrients. If the soil system immobilizes nutrients too quickly, there will be 

insufficient amounts to sustain optimal plant growth (Dungait et al. 2012) and conversely, if not 

enough nutrients are immobilized, nutrient runoff can occur (Savard et al. 2010). In agricultural 

systems, the balance of mobilization and immobilization is shifted to favour mobilization, and 

nutrient leaching is often a consequence of this imbalance (Powlson 1993; Vitousek et al. 2010; 

Royer et al. 2006; Savard et al. 2010). The nutrient cycle thus has considerable ramifications on 

the sustainability of agriculture because of the potential environmental impacts an imbalanced 

cycle may have.  

 

2.3: Level III - Soil Microorganisms 

 Nutrients are made available largely through the action of soil microorganisms, and a 

healthy soil microbial population can not only minimize leaching, but improve crop yield as well 

(Mӓder et al. 2002; Lalfakzuala et al. 2008; Zhong et al. 2010; Ge et al. 2011; Lv et al. 2011). 

The beneficial soil microbial population can be broadly grouped into two main categories: 

specialized mutualists such as mycorrhizal fungi and rhizobia that engage in direct symbiotic 

interactions with plants, and generalists that make up most of the rhizosphere community and 

indirectly enhance plant growth (Figure 1.1, level III). Direct symbiotic associations are 

beneficial in that they allow the plants access to nutrient sources they are otherwise unable to take 

advantage of, whereas the presence of rhizosphere microorganisms typically enhances plant 

growth through more indirect means. 
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2.3.1: Arbuscular-mycorrhizal fungi 

 Arbuscular mycorrhizal (AM) fungi form intimate associations with the roots of 

approximately 80% of known vascular plant species (Peterson et al. 2004). Though AM fungi 

may be of the Arum or Paris type depending on how the fungus progresses through the root, only 

the Arum type will be considered here as it relates to pea. In the association between AM fungi 

(Phylum Glomeromycota) and plants, the AM fungus is an obligate partner, while the plant is a 

facultative partner (Peterson et al. 2004). The overall symbiosis and its development are 

summarized in Figure 1.2. During this symbiosis, the fungus obtains phosphorus and nitrogen 

that would be otherwise inaccessible to the plant (Carbonell and Gutjahr 2014) and exchanges 

them for photosynthetic sugars and a protected environment in which to live. The AM fungus is 

based primarily within the cortical tissue of the plant root, though it maintains a broad hyphal 

network in the surrounding soil (Friese and Allen 1991). The hyphae external to the root, i.e., the 

extraradicular hyphae, allow the fungus access to phosphorus pools beyond the phosphorus-

depletion zone surrounding the plant root, because in essence they extend the surface area of the 

root system (Li et al.  1991). The extraradicular hyphal network also contributes to improved soil 

particle stability through exudation of the protein glomalin (Rilling 2004; Singh et al. 2013), the 

low turnover rate of which helps sequester carbon within the soils (Singh et al. 2013). It is worth 

noting that this symbiosis does not increase the overall amount of nutrients present within a soil, 

it simply makes those already present more accessible to plants.  

 The mycorrhizal fungus is present as a dormant spore within the soil, and upon its 

perception of strigolactones exuded by nearby roots, the spore is induced to germinate and 

develop branched hyphae (Gutjahr and Parniske 2013). As the hyphae grow towards the plant 

root, they exude lipo-chito-oligosaccharide-based myc factors that are used by the plant to 

establish symbiotic compatibility and to prepare the root for colonization by the fungus (Maillet 

et al. 2011; Gutjahr and Parniske 2013). Once contact is established and compatibility is assessed 

by  
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Figure 1.2: Overview of the arbuscular-mycorrhizal symbiosis. A longitudinal section of a plant 

root is shown at the bottom of the diagram. The mycorrhizal symbiosis is initiated by the 

germination of an AM fungal spore (AMS), and hyphal branching is promoted by strigolactones 

exuded by the plant. Fungal myc signalling molecules are also produced around this time.  

Following mutual recognition between the two symbionts, the symbiosis then proceeds with 

fungal penetration of the root via the formation of a hyphopodium (Hyp). The crux of the 

symbiosis is the differentiation of hyphae within the root into arbuscules (Arb) and storage 

vesicles (Ves). Phosphorus is taken up by the extraradical hyphal network (HN), transported 

through the fungus, and is exchanged primarily at the arbuscule for plant photosynthates. The 

phosphorus and sugars are transported to the appropriate sinks via the vascular tissue (Vas). 

Spores for the propagation of the fungi form on the extraradicular hyphal network when the 

symbiosis is well-developed.  
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fungal recognition of root cutin monomers (Wang et al. 2012), a fungal structure known as a 

hyphopodium is formed to assist in fungal penetration of the root epidermis.  The fungus then 

grows within the cortical intercellular spaces of the root (Guinel and Geil 2002). Although it 

enters plant cells within the inner cortex, the fungus is never in direct contact with the plant 

cytoplasm as it is contained within a plant-based perifungal membrane whenever it breaches a 

cell (Bonfante and Perotto 1995). Once within the cell, the fungal hypha differentiates into a 

transient, tree-like structure known as an arbuscule; this structure helps facilitates the transfer of 

phosphorus and sugar between the two symbiotic partners (Carbonell and Gutjahr 2014). 

Arbuscules are short-lived structures, and persist for only 24-72h (Kobae and Hata 2010; Gutjahr 

and Parniske 2013).  

 Once the symbiosis is well-developed, additional fungal structures known as vesicles 

form; these have presumed roles in lipid storage (Peterson et al. 2004). The fungus is propagated 

through the production of spores formed on the extraradicular hyphae (Peterson et al. 2004). The 

development and maintenance of this association is dependent on the nutrient status of the plant. 

If phosphorus is plentiful in the soil environment, a hypothetical shoot-based signal inhibits 

fungal colonization of the root system (Carbonell and Gutjahr 2014). In addition, the amount of 

carbon allocated to the fungus is linked with the amount of phosphorus the plant receives from 

the fungus, and more productive fungal partners are allocated more carbon (Kiers et al. 2011).  

 

 2.3.2: Rhizobia 

 A more selective symbiosis occurs between nitrogen-fixing bacteria (Family 

Rhizobiaceae) and leguminous plants such as pea (Mylona et al. 1995). Unlike in the mycorrhizal 

mutualism between AM fungi and plants where the fungus is an obligate symbiotic partner, both 

partners in the rhizobia-legume mutualism are facultative symbionts. An overview of the 

rhizobia-legume symbiosis is illustrated in Figure 1.3, with the inset highlighting the flow of 
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nutrients between partners. The rhizobia, in exchange for dicarboxylic acids such as fumaric acid, 

provide the plant with nitrogen mainly as ammonium. In addition, glutamate is thought to be 

provided to the rhizobia in order to reduce their need for ammonium (Lodwig et al. 2003). The 

ammonium produced from nitrogen fixation that is not used by the bacteria can then be 

transferred to the plant to contribute to its glutamate pool (Lodwig et al 2003). The nutrient 

transfer is facilitated by the close association between plant cells and rhizobia in the nodules. The 

rhizobia-legume symbiosis requires the rhizobia to enter the root, and the underlying molecular 

mechanism by which rhizobia enter and colonize plant roots is thought to be a co-opted variation 

on the mycorrhizal infection process (Guinel and Geil 2002; Provorov et al. 2002; Oldroyd et al. 

2011). An overview of nodule development is presented here and is briefly summarized in Figure 

1.3. The focus will be on the indeterminate nodule type, as this is the type formed by P. sativum 

(Guinel 2009) and its specific partner Rhizobium leguminosarum bv. viciae (Skøt 1983).  

 The chemotactic attraction of rhizobia to roots is achieved through the secretion of 

phenolic flavonoids by the plant, which provides a level of specificity to the interaction (Ferguson 

et al. 2010). Upon sensing a suitable plant host, the rhizobia produce lipochitooligosaccharides 

(NOD factors) which in turn initiate developmental changes within the root (Tsyganov et al. 

2002; Ferguson et al. 2010). When rhizobia contact the root hair, it curls over to form a pocket 

where the bacterial colony grows. Rhizobia enter the root hair via physical forces and chemical 

degradation of the cell wall. Rhizobia proceed through an infection thread, a structure composed 

of plant cell wall components and supported by microtubules (Oldroyd et al. 2011), towards the 

root’s inner cortex (Ferguson et al. 2010). Within the inner cortex, the cortical cells will have 

already begun to divide in response to the NOD factors to form a nodule primordium (Tsyganov 

et al. 2002; Ferguson et al. 2010). As the cells making up the primordium continue to divide, they 

soon make contact with the infection thread and the rhizobia contained within. The nodule proper 
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is considered to have formed once the primordium begins developing its own vasculature and the 

rhizobia are released from the infection thread (Xiao et al. 2014).  

 The structure of a fully-formed indeterminate nodule has four to five distinct zones with 

one interzone (Guinel 2009), illustrated in Figure 1.3. The outermost zone I is the meristem, and 

is responsible for the continual growth that characterizes the indeterminate nodule type. Proximal 

to zone I, zone II is the location where the infection threads terminate. In this zone, the rhizobia 

are endocytosed by the plant cells (Łotocka et al. 2012) and are contained within a plant-derived 

peribacteroid membrane separating them from the plant cell cytoplasm (Whitehead and Day 

1997). The encapsulated rhizobia are induced to terminally differentiate into bacteroids by plant 

nodule-specific cysteine-rich peptides which prevent further bacterial cell division; the resulting 

bacteroid is now part of an organelle-like structure known as a symbiosome (Kondorosi et al. 

2013). Between zone II and zone III is the interzone II-III, which contains plant cells that are rich 

in starch and produce leghaemoglobin (Guinel 2009). Leghaemoglobin is an iron-heme protein 

that mediates oxygen levels in the nodule, thereby creating a microoxic environment that allows 

the bacteroid nitrogenase enzyme to fix nitrogen with minimal inhibition from oxygen binding 

(Downie 2005). However, zone III is the prime location where the bacteroids are fixing nitrogen. 

Zone IV is the most proximal zone where both bacterial and plant cells are senescing (Guinel 

2009). An additional proximal zone has also been described, zone V, which contains rhizobia that 

have not differentiated and seem to feed on the senescent tissues (Timmers et al. 2000). This 

latter zone likely also contributes to the distribution of non-differentiated rhizobia into the soil 

environment after the nodule senesces entirely (Timmers et al. 2000).   

 Because the cost to the plant of forming and maintaining nodules is high, the number of 

nodules that form on the root is restricted primarily by a plant mechanism known as 

autoregulation of nodulation (AON; Voisin et al. 2010; Reid et al 2011). In pea, seedlings are 

susceptible to colonization by rhizobia only after the first leaves begin to develop (Voisin et al. 
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Figure 1.3: Overview of the rhizobia-legume symbiosis in pea. A longitudinal section of a plant 

root is shown at the bottom. The symbiosis is triggered by the sensing of the flavonoids by 

rhizobia (Rhiz) which then produce NOD factors and move chemotactically toward the root 

exuding the flavonoids. The NOD factors induce the dedifferentiation and cell division of some 

inner cortical cells (shown in lighter brown). Once in contact with a root hair, rhizobia alter the 

cell cytoskeleton so that the root hair curls. Through pressure and degradation of the cell wall, the 

rhizobia proceed down an infection thread (IT) that allows entry into cortical cells. The IT grows 

towards the nodule progenitor cells and brings rhizobia to the nodule primordia formed by the 

cortical cells, resulting in the formation of a nodule with its own vasculature. Indeterminate 

nodules can be divided into five (I-V) zones and one interzone (II-III). The inset from zone III, 

the fixation zone, illustrates the symbiosomes (purple) taking in atmospheric nitrogen (N2) and 

fixing it (yellow arrow) into ammonia (NH4). This, along with aspartate (Asx), is exchanged with 

glutamate (Glu) and dicarboxylic acids (DCA) received from the plant vasculature (Vas). 
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2010), and they form nodules only when the plant is in need of nitrogen. After the seedling stage, 

the colonization by rhizobia and the subsequent inhibition of nodulation via AON produce a 

characteristic zone of nodulation at the crown of the root system where nodules are first formed 

(Reid et al 2011). However, if the plant becomes limited by nitrogen, a second zone of nodulation 

may be formed lower on the root system (Voisin et al. 2010). As with the mycorrhizal symbiosis, 

the availability of the primary nutrient provided by the symbiont has a negative influence on the 

development of the rhizobial symbiosis, as seen when nitrate is made available to inoculated 

plants (Bollman and Vessey 2006). Curiously, in contrast to nitrate, when ammonium is provided 

to inoculated pea plants, nodulation is stimulated instead of inhibited (Bollman and Vessey 2006). 

This may be related to the aforementioned incorporation of ammonia into glutamate by the plant 

and subsequent promotion of nitrogen fixation by this amino acid (Figure 1.3). In absence of 

provided nitrogen, the rhizobial symbiosis is capable of providing sufficient nitrogen for plant 

growth (Voisin et al. 2002). Unlike the mycorrhizal symbiosis which only makes those nutrients 

already present more available, the rhizobial symbiosis increases the nitrogen levels in the soil 

after the nodules and/or roots decompose.  

 

 2.3.3: The rhizosphere community   

 Although root mutualists provide strong nutritional benefits to plants, the microorganisms 

in the rhizosphere community cannot be overlooked. These generalist species can promote plant 

growth either directly or indirectly.  An excellent example are those bacteria, such as 

Enterobacter cloacae UW4 (Li et al. 2000) or various rhizobial species (Duan et al. 2009), that 

are able to metabolize 1-aminocyclopropane-1-carboxylic acid (ACC) using the ACC-deaminase 

enzyme. These bacteria are thought to lower plant production of ethylene by breaking down the 

ethylene-precursor ACC for use in their own metabolism (Glick et al. 1998). Ethylene is a plant 
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stress hormone that limits plant growth (Apelbaum and Burg 1972), and when ACC is degraded 

the levels of the product ethylene are lowered. Therefore, lower ACC levels mean that plant 

growth is not inhibited by ethylene (Glick et al. 2007) and symbioses with beneficial root 

microorganisms can continue to develop (Barnawal et al. 2014). Ethylene is a known inhibitor of 

both the mycorrhizal and rhizobial symbioses. It negatively affects processes involved in 

nodulation such as rhizobial entry into the root cortex and nodule primordia formation (Guinel 

and Geil 2002). Exogenous ethylene application has also been shown to reduce the progression of 

mycorrhizal fungi into pea roots and the subsequent development of intraradicular hyphae and 

arbuscules (Geil et al. 2001).  

 Rhizosphere microorganisms can also indirectly assist plants by secreting chitinase and 

cellulase enzymes in the rhizosphere to help protect plants against pathogens such as fungi 

(Kaplan et al. 2013). Finally, by promoting root growth, the rhizosphere community can enhance 

nutrient uptake, as demonstrated in tomato plants inoculated with Bacillus amyloliquefaciens 

IN937a and B. pumilus T4. With microorganism inoculation, these plants required 20-30% less of 

a N:P:K fertilizer (20:10:20) to maintain growth equal to that of plants given 100% of the 

recommended dose of fertilizer (Adesemoye et al. 2009).   

 The benefit of a healthy soil microorganism population is demonstrated in the cascade 

effect of improved plant growth; this can be seen clearly when organic matter is added to soils. 

Increases in microbial biomass, diversity and activity are observed with organic matter usage 

(Lalfakzuala et al. 2008; Zhong et al. 2010; Ge et al. 2011; Lv et al. 2011) and this increase 

contributes to higher crop yields (Mӓder et al. 2002; Zhong et al. 2010) and soil fertility (Mӓder 

et al. 2002; Ge et al. 2011). Overall, the presence of a healthy and diverse soil microbial 

population is paramount, and accordingly alternatives or alterations used to decrease the 

environmental impact of agriculture need to take into consideration the soil microorganisms. The 

compatibility between the soil microorganisms and agricultural practices is not always assured, 

and potential negative impacts should be examined before the practice is adopted. Even the 
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presence or absence of organic matter in the form of compost/manure can have profound effects 

on the composition and biomass of soil microorganisms, and the changed microorganism 

populations then impact the nutrition of plants. 

 

2.4: Level IV - The soil matrix 

 Ultimately, it is the composition of the soil itself that is the foundation upon which 

microbial populations, nutrient cycling and plant growth are built (Figure 1.1, level IV). Although 

in most cases the soil structure cannot be easily altered, its physical properties such as pH can be 

manipulated for agricultural gain. For brevity, this section will be limited to soil pH as it plays a 

crucial role in the suitability of a soil system for growth of plants and microorganisms. It is well 

known that soil pH and the availability of nutrients are linked (e.g., Neumann and Römheld 2012) 

and that release of nutrients from minerals is enhanced under acidic (pH<5) conditions (Valsami-

Jones et al. 1998; Guidry and Mackenzie 2003; Welch et al. 2010).  

 The diversity of soil bacterial populations is also linked with soil pH, with the highest 

diversity seen at neutral pH (Lauber et al. 2009). Agricultural practices often directly alter the soil 

pH as seen in the examples below. The consistent application of nitrogen fertilizers results in 

increased soil acidity (Conyers et al. 1996; Guo et al. 2010) that is exacerbated when cations are 

preferentially taken up by plant roots over anions (Bolan et al. 1991; Guo et al. 2010). Soil 

acidification is a major problem in agriculture; it affects phosphorus mobility and increases the 

availability of potentially-toxic aluminum (Guo et al 2010). The acidification of soils can be 

countered through addition of calcium carbonate in a process known as liming (Haynes and 

Naidu 1998), which often results in increased growth of crop plants (Mathur and Levesque 1983; 

Grewal and Williams 2003).  

 In the following experiments, I exclusively utilized an artificial soil composed of 1:1 

vermiculite:Turface™ in order to minimize externally-provided organic matter which could 

confound results. Vermiculite is a micaceous mineral composed primarily of magnesium and 
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potassium (Kalinowski and Schweda 2007) while Turface™ is a manufactured, heat-treated clay, 

the  main components of which are silicon-dioxide, aluminum oxide, and iron (II) oxide 

(Turface™ composition report 2013; Table 1.1).    

 

Section 3: Agrominerals for agriculture 

 Rock fertilizers, or agrominerals, are environmentally-friendly nutrient sources with great 

agricultural potential, especially in developing countries (van Straaten 2007, p. 149). One benefit 

of agromineral is that, unlike chemical fertilizers, they are not highly processed before use to 

solubilise nutrients (van Straaten 2007, p. 10) and are therefore cheaper than chemical fertilizers 

(Chien and Menon 1995; Labib et al. 2012). The problems associated with excessive chemical 

fertilizer use can be mitigated by their combined use with agrominerals. The benefit of an 

agromineral and chemical fertilizer combination is demonstrated in a study by Labib et al. (2012) 

where the growth of potatoes was highest when reduced levels of potassium-sulfate fertilizer 

application was combined with potassium-containing agrominerals.  

 There is, however, at least one drawback that can limit the use of agrominerals. Rocks are 

inherently complex combinations of minerals, and agrominerals can sometimes contain 

undesirable elements that would need to be first removed, two examples of which are radioactive 

uranium-238 (Sam et al. 1999) or toxic barium (Heim et al. 2012). If removal of these elements is 

not feasible, for example due to cost, it would mean that this particular mineral is unusable for 

agriculture. In this thesis, I will be focusing specifically on an agromineral that is relatively free 

of harmful elements and is already being sold as a soil amendment for agriculture: Spanish River 

Carbonatite (SRC). A brief overview of SRC is provided below. SRC is a complex alkaline rock 

that is primarily composed of calcite, apatite and biotite minerals (Sage 1987; Table 1.1), and is 

mined and sold by Boreal Agrominerals Inc. (Brampton, Ontario). The underlying carbonatite 

rock deposit that SRC is harvested from was formed through volcanic activity ~1880 Ma 
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(Rukhlov and Bell 2010) and is located in Northern Ontario, Canada. Because of the remoteness 

of the deposit, large amounts of SRC are removed only every few years; this SRC is then stored 

as an uncovered pile that is being packaged when needed.  Anecdotal reports from commercial 

users of SRC have indicated that increases in plant growth, soil pH, and soil health accompany its 

use, but a scientific examination of the influence of SRC on plants, soils and microorganisms has 

not yet been conducted.  
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 Table 1.1: Composition of two minerals used as part of the artificial soil mixture. Turface™ was 

used alongside vermiculite as the soil medium whereas Spanish River Carbonatite is an 

agromineral which was added to the soil in order to test for its usefulness as a nutrient source for 

plants. 

 

Turface™ Spanish River Carbonatite 

% composition (average) % of composition* 

SiO2 74 Ca 19.50 

Al2O3 11 Fe 2.82 

Fe2O3 5 Al 2.10 

Miscellaneous 10 Mg 1.32 

(e.g., CaO)  P 1.23 

  K 0.78 

  Na 0.51 

  N 0.30 

  S 0.05 

    

  *Retrieved from Boreal Agrominerals 

website, 2015. 
(http://www.borealagrominerals.com)   
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Section 4: Project Objectives  

The main objective of this thesis was to confirm the potential usefulness of SRC as an agricultural 

amendment by examining how SRC addition affects the plant-soil-microbe system. Because of 

the broad scope of this objective, it was divided into the following sub-objectives: 

1) To determine the optimal concentration of SRC based on plant growth, soil condition, and soil 

microorganism changes. To complement this objective, I hypothesize that plant growth, soil 

conditions and soil microorganisms will be positively impacted as the concentration of SRC is 

increased. Testing of this hypothesis is covered in chapter 2, which has been prepared as a stand-

alone manuscript for later publication.  

2) To assess how the rhizobia-legume symbiosis is altered, if at all, by optimal SRC addition. To 

complement this objective, I hypothesize that the introduction of SRC into the soil will improve 

nodulation efficiency; this would be due to the increased mineral nutrients provided by SRC and 

the subsequent proliferation of rhizobial bacteria.  Testing of this hypothesis is also covered in 

chapter 2.  

3) To examine how the storage conditions of SRC affect its usefulness as an agricultural 

supplement. To complement this objective, I hypothesize that, because SRC is a non-biological 

mineral, its usefulness will be unaffected by storage conditions. The testing of this hypothesis is 

covered in chapter 3, which although formatted as a stand-alone manuscript, contains preliminary 

findings that will need to be expanded on before publication.  
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Chapter 2: Assessing the suitability of Spanish River Carbonatite for use in agricultural 

systems 

   

Section 1: Introduction 

 Ensuring food security for the ever-growing global human population is contingent upon 

more efficient agricultural practices (Roy et al. 2006). A prevailing problem limiting the growth 

of crop plants is the inability to provide consistently sufficient nutrients to maintain plant growth 

and yield (Dungait et al. 2012). Two strategies are currently used to approach this problem, and 

can be broadly divided into the use of organic and the use of chemical nutrient sources. In the 

former, additives such as compost (Ge et al. 2011) and plant residues (Stanhill 1990) are used as 

nutrient sources. In the latter, raw materials such as phosphate rock (van Straaten 2007, p. 149) 

are processed to convert the nutrients into water-soluble forms that are easily taken up by plants. 

For example, treating phosphate rocks with sulfuric acid is the main means by which 

superphosphate fertilizer is produced (van Straaten 2007, p. 134-136). The use of organic or 

chemical nutrient sources comes with associated costs: organic fertilizers typically fail to reach 

the yields achieved by chemical fertilizers (Stanhill 1990; Trewavas 2001; Mäder et al. 2002), 

and the long-term use of chemical fertilizers in conventional agriculture leads to environmental 

damages due to nutrient runoff (Savard et al. 2010) and promotion of algal blooms/hypoxic 

conditions (Diaz and Rosenberg 2008). 

 The addition of rock fertilizers, also known as agrominerals, to soils is one means by 

which conventional and organic agricultural practices can be supplemented to increase plant 

growth and environmental friendliness (van Straaten 2007, p. 7; Labib et al. 2012). Agrominerals 

are locally-mined rock minerals that are generally not processed or modified prior to addition to 

soils, and they rely upon physical and biological weathering processes to release their nutrients 

for uptake by plants. Few studies have examined the use of agrominerals in agricultural systems, 
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however (Chien and Menon 1995; Sahu and Jana 2000; Liu et al. 2008; Labib et al. 2012), and 

the techniques required to maximize nutrient release have not been fully clarified. Agrominerals 

can also be ‘contaminated’ with undesirable elements such as uranium-238 (Sam et al. 1999) that 

require removal for agricultural use. 

  Spanish River Carbonatite (SRC) is an agromineral that is relatively free of harmful 

elements and is harvested from the Sudbury region in Northern Ontario. SRC is an excellent 

model to test the potential of agrominerals as it weathers quickly, its mineralogy has been 

characterized, and it has already been sold for a number of years as an agricultural soil 

supplement and liming agent (John Slack, personal communication 2014). It is a carbonatite 

mineral composed primarily of apatite, calcite, and biotite (Sage 1987). Here, a scientific 

examination of SRC is conducted to examine its effects on soil microorganisms, soil chemical 

properties, and plant growth. The overall objective of the study was to assess the suitability of 

SRC for agricultural use and this objective was divided into three sub-objectives: 1) To determine 

how SRC influences the growth of a model plant species throughout its life cycle, 2) to examine, 

during plant growth, how SRC affects the soil pH and soil microbial populations, and 3) to 

determine how SRC addition affects the rhizobial-legume symbiosis.  The pea Pisum sativum (cv. 

Sparkle) was chosen for use here as a model plant for two reasons: it is an important agricultural 

crop in Canada, with over 53,000 tonnes produced in 2013 (FAO 2015), and because it forms 

agriculturally-relevant interactions with mycorrhizal fungi and nitrogen-fixing rhizobia. Thus, the 

use of pea allowed us to explore several agriculturally-relevant aspects of plant growth and how 

these may be altered upon SRC addition within a single easily-grown plant system.  

 In this study, it was found that SRC shows great promise both as a model agromineral 

and as a soil supplement for agricultural systems. SRC,  added as a ratio of 1:10 SRC:soil, was 

capable of providing all required nutrients to plants except for nitrogen, with the agromineral 

acting as a mediator to a mutually beneficial positive feedback mechanism between soil 
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microorganisms and plants. Furthermore, when plants were given SRC and inoculated with 

rhizobia, nodulation was enhanced and the costs associated with nodulation were reduced when 

compared to inoculated plants not given SRC.  

 

Section 2: Materials and Methods  

2.1 Plant growth conditions 

 The following conditions were used for all plants regardless of the experiment unless 

otherwise noted. Surface-sterilization of Pisum sativum cultivar ‘Sparkle’ seeds was 

accomplished by swirling them in an 8% bleach solution for ten minutes. Seeds were then rinsed 

three times for one minute in sterile de-ionized water and left to imbibe for 16-18h in absence of 

light (Guinel and Sloetjes 2000). Following imbibition, seeds were individually planted 1cm deep 

with their radicles downwards in black Cone-tainers™ (656mL volume; Stuewe and Sons, 

Tangent, OR, USA) which had been filled with soil and fitted with a piece of fibreglass screen on 

the bottom to minimize soil loss. To avoid introduction of nutrient sources from organic matter 

that could confound results, a 1:1 (v:v) mixture of vermiculite:Turface™ (Plant Products Co. 

Ltd., Brampton, ON) was used as the soil medium. Soils were always autoclaved (sterilized for 

75mins at 121°C) and left to cool to room temperature prior to use. Where indicated, the soil was 

supplemented with SRC prior to autoclaving. The SRC was obtained directly from Boreal 

Agrominerals Inc. (Brampton, ON) as 4.54kg retail packages. To ensure seedling establishment, 

the top of the soil was kept moist through either surface watering or the addition of a 

polyethylene plastic sheet held in place around each Cone-tainer™ with an elastic band until 

shoots emerged. Seeds that took longer than six days to establish (indicated by emergence of 

shoot from the soil; Knott 1987) were removed from the experiment and discounted. At planting, 

Cone-tainers™ were placed in sheet metal trays and watered by filling the tray with 1.5L of 
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deionized water every three to four days. The seed nutrient reserves are mostly depleted by 10 

days after planting (DAP; Guardiola and Sutcliffe 1972), and so plants were given various 

nutrient solutions (as indicated under the specific experiment) every third watering after this time. 

All plants were grown in the growth-room facility at Wilfrid Laurier University under a 16h day 

(23°C) and 8h night (18°C) photoperiod cycle. Light was provided through high pressure sodium, 

metal halide and fluorescent bulbs giving 250μmolm
-2

s
-1

 of photons (measured with LI250A 

LICOR Biosciences light meter, Lincoln, NE, USA).  

 

2.2 Determination of optimal SRC concentration 

 To initiate the investigation into the usefulness of SRC as a soil additive, the optimal 

concentration of SRC was determined. A SRC:soil ratio of 1:10 (v:v) had been recommended by 

Boreal Agrominerals to its customers, however, this recommendation was based on the 

composition of the minerals and had not been verified as optimal for plant growth (John Slack, 

personal communication 2013). Four treatment groups were tested: soils with no SRC (control), 

soils with the recommended amount of SRC (1:10), soils with half of the recommended amount 

(1:20), and soils with twice the recommended amount (1:5). A quarter of the recommended 

amount (1:40) was also tested, but this treatment was discontinued as plants with this ratio were 

either equivalent to or worse than the control plants in terms of growth. Nutrients were provided 

to control plants in the form of a solution (as per Guinel and Sloetjes 2000, see Appendix A). The 

only non-SRC nutrient provided to SRC-treated plants was nitrogen in the form of 2.5mM 

NH4NO3 solution as SRC is a poor source of nitrogen (Sage 1987). Ammonium nitrate was 

chosen as the nitrogen form because it has been used previously in studies of pea growth (e.g., 

Bollman and Vessey 2006). The concentration of nitrogen in both the nutrient and nitrogen 

solutions was the same. Five plants were grown for each time period and treatment, and the 
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experiment was replicated four times. Three different life-stages of pea were examined: seedling 

(9 days-after planting; DAP), vegetative (21DAP), and reproductive (42DAP) (Knott 1987).At 

each stage, the soil pH and the number of nodes/plant dry weight were measured to indicate 

changes upon SRC addition in soil characteristics (Watson and Brown 1998) and plant growth 

(Voisin et al. 2002), respectively.  

 Plants were extracted from the soil by gently emptying each pot into separate, clean trays. 

Once the plants were freed from the pots, their root systems were washed clean of soil particles 

using deionized water and their cotyledons removed; the plants were then placed in paper towels 

to be dried for at least 72h at 60°C (Macdonald 2011). The soil left in the tray from each pot was 

homogenized by hand, and 20g collected for measuring the soil pH. To each individual soil 

sample, 20mL of deionized water were added; the solution was mixed by swirling for 5 seconds 

and then left to equilibrate for 10mins at room temperature before its pH was measured (Watson 

and Brown 1998). 

 Biomass allocation was examined at 21 and 42DAP by separating the root and shoot 

systems prior to drying.  At 42DAP measurements of plant yield were undertaken to show 

agricultural potential. Three yield parameters were used: number of pods per plant, pod dry 

weight per plant, and number of seeds per plant. Pods were removed from the shoots prior to 

drying. Following drying, the number of non-aborted seeds (indicated by rounded and full 

appearance; Pigeaire et al. 1986) was counted. 

 Soil microorganisms were quantified using heterotrophic plate counts (HPC; Olsen and 

Bakken 1987) from soils of 42DAP plants. Soil sterility following autoclaving was also 

confirmed by this methodology. The soil samples were collected by emptying the pots into 

separate 70% ethanol-sterilized trays, homogenizing by hand, and placing 1g from each pot into 

autoclave-sterilized capped test tubes. Soil samples were stored overnight at 4°C and plated the 
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next day. Samples were combined with 9mL of sterile deionized water, vortexed, and then used to 

make a dilution series from 10
-1

 to 10
-6

. For each dilution, 100µL was spread-plated onto 2.3% 

nutrient agar plates (Dicfo nutrient agar; BD, Mississauga, ON). All dilutions and plating were 

undertaken in a Labconco purifier class II biosafety cabinet. Plates were sealed with Parafilm® 

and incubated for 120h in darkness in the growth room (see §2.1 plant growth conditions). 

Resultant colonies were counted daily for 5 days, and the colony counts converted to colony-

forming-units (CFU) per gram of soil by multiplying the observed colony number by the dilution 

factor (e.g., by 100 for 10
-1

 dilution) and then dividing by the volume plated (100μL). Although 

all dilutions and time points were examined, only the dilutions and time points which resulted in 

<300 adequately-spaced colonies were chosen for statistical analysis. Plates beyond these time 

points and dilutions frequently had colonies that merged together and this made colony counts 

unreliable (Figure 2.1).  
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Figure 2.1: Comparison between nutrient agar plates with adequate (left) and excessive (right) 

bacterial growth. While both plates are from the 1:10 SRC:soil (v:v) treatment group from the 

optimal concentration experiments at 120h after plating, the left is with a 10
-1

 dilution, while the 

right is with a 10
0
 dilution. Plates left to grow longer than 48h or with concentrations above 10

-1
 

had bacterial colonies that frequently coalesced as seen in the right plate.  
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2.3 SRC and the rhizobia-legume symbiosis 

 Two reasons motivated the examination of how SRC affects the rhizobia-legume 

symbiosis: first, this symbiosis is an agriculturally-important source of nitrogen, and second, the 

addition of rhizobia and SRC to the soil system should theoretically provide plants with all 

required nutrients. Three treatment groups were used for these experiments: control plants grown 

with no SRC and inoculated with rhizobia (RSRC
-
), plants grown with 1:10 SRC and inoculated 

with rhizobia (RSRC
+
), and plants grown with 1:10 SRC and given nitrogen solution (NSRC

+
, as 

per §2.2). The latter group was included to distinguish changes induced by the symbiosis from 

those induced by the SRC treatment. Eight plants were included per treatment group, and the 

experiment set was replicated at least two times. The RSRC
+
 plants were given only water, the 

RSRC
-
 group received low nitrogen solution (nutrient solution with only 0.5mM Ca(NO3)2; 

Guinel and Sloetjes 2000) and the NSRC
+
 group received 2.5mM NH4NO3 (all given as per §2.2).  

 At 4DAP, RSRC
-
 and RSRC

+
 plants were inoculated with Rhizobium leguminosarum bv. 

viciae (128C53K; kindly provided by Dr. Bernard Glick, University of Waterloo). Rhizobia were 

cultured from yeast-mannitol agar slant cultures by transferring two loops of bacteria into 20mL 

of yeast-mannitol broth (Appendix A) and then incubating the broth in a orbital-shaking water-

bath (New Brunswick Scientific, Edison, NJ, USA) at 100rpm and 25°C for approximately 48h 

until bacteria reached stationary growth (indicated by a spectroscopic absorbance of 0.8-1.0 at 

600nm; Macdonald 2011). A 5% rhizobia inoculant solution was then prepared from the broth 

and 5mL of this solution were given to each plant around the base of the epicotyl.  

 Plants were harvested 24 days after inoculation (DAI)/28DAP to compare nodulation and 

plant growth characteristics between treatment groups. Plants were examined as per the 

vegetative measurements in §2.2. The number of functional nodules (indicated by the presence of  
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Figure 2.2: Photomicrograph showing a single lateral root segment (LR) with non-functional and 

functional nodules. The inset shows a single LR with both single (left) and multilobed (right) 

nodules. Senescent nodules (SN) are white with a green core, whereas functional nodules (FN) 

have a reddish-pink core due to the presence of leghaemoglobin. Both lateral roots are from 28 

days-old plants that had been inoculated with Rhizobium leguminosarum bv. viciae 4 days after 

planting. The images were taken with a SMZ1800 stereomicroscope, and the scale bars are 1mm. 

Use of microscope courtesy of Dr. M. Costea, department of Biology, Wilfrid Laurier University.  
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leghaemoglobin; see Figure 2.2 and Bisseling et al. 1978), their location on the root system, and 

their dry weight were used to assess symbiotic status. Nodules were excised from the roots using 

a razor blade and placed in pre-weighed Eppendorf Tubes®, then dried as per other plant tissues 

(see §2.2). To assess the efficiency of the symbiotic association, plant return on nodule 

construction cost (host total dry weight/nodule dry weight; Oono and Denison 2010), specific 

nodulation (number of nodules/host root dry weight; Gulden and Vessey 1998) and specific 

nodule dry weight (nodule dry weight/host root dry weight; Gulden and Vessey 1998) were 

calculated. Plant return on nodule construction cost gives an estimate of how much plants were 

able to grow based on the amount of carbon they invested in nodules. Specific nodulation and 

specific nodule dry weight each indicates how numerous and how large nodules were, 

respectively, when the overall size of the root system is taken into account.   

 

2.4 SRC, nodulation, and plant nutrition 

 Of further interest in the assessment of SRC’s impact on the rhizobia-legume symbiosis 

is the nitrogen status of the plant. Symbiotic rhizobia are capable of fixing atmospheric nitrogen 

into ammonia (Lodwig et al. 2003) which is made available to plants for their nutrition. 

Determining the nitrogen status of a nodulating plant in absence of externally-provided nitrogen 

therefore provides an indirect indication of how much nitrogen is taken up by the plant as a result 

of the symbiosis.    

 Four treatment groups were used for these experiments and these were grown as per those 

in §2.3: RSRC
-
 as a positive symbiotic control, NSRC

+
 as a positive nitrogen control, N

-
SRC

+
 as 

a negative nitrogen control provided with 1:10 SRC but no nitrogen sources, and  RSRC
+
 as a 

symbiotic SRC treatment. Watering was done as per §2.3, with N
-
SRC

+
 treatment plants 

receiving only water. Each treatment group consisted of eight plants which were harvested at 



 

42 

 

24DAI/28DAP over one trial. Two additional 17DAI/21DAP trials were also conducted to 

examine chlorophyll differences over time, with the same groups and number of plants as above.  

 Plant nitrogen was estimated by levels of leaflet chlorophyll (Guinel and Sloetjes 2000) 

and nitrogen levels were quantified with dried shoot nutrient content determination (carried out 

by Actlabs, Agricultural division, Ancaster, ON). Following the removal of the plant from the soil 

(as per §2.2), the compound leaves at nodes four (fully developed) and six (recently developed) 

were separated from the parent plants. Leaflets from the same node and treatment group were 

pooled, and 0.5g of tissue (fresh weight) from each pool was homogenized in 80% acetone 

(Guinel and Sloetjes 2000) using a mortar and pestle. As pooling invariably resulted in more than 

0.5g of fresh material available, consecutive samples were taken from each pool until material 

was depleted and these were considered as replicates. After homogenization, 3mL of the 

homogenate were diluted with 1mL of 80% acetone in a test tube, and 1.5mL of the dilution 

transferred to an Eppendorf Tube®. Samples were centrifuged for 10mins at 2500rpm (Porra et 

al. 1989), and then the supernatant was transferred to a quartz cuvette and its absorbance was read 

at 470, 647, 664 and 710nm using a Cary 50 UV-Vis spectrophotometer (Varian, Inc. 

Mississauga, ON). Absorbance readings were converted into mg chlorophyll per g fresh weight 

tissue using the Lichtenthaler equations (Lichtenthaler 1987). Dried shoot tissue (minus node four 

and six compound leaves) were weighed and the shoots were then divided equally into two 

samples per treatment group. These samples were sent to Actlab Laboratories for nutrient content 

analysis. The number of nodules present on the root systems was recorded prior to drying. 

 

2.5 Statistical analyses 

 All statistical analyses were completed using the R software suite (version 3.2.1; 

http://www.r-project.org/) with the ‘lme4’, ‘proto’, ‘multcomp’ and ‘lmerTest’ library packages 

http://www.r-project.org/
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as well as the Microsoft Excel software (2007). Measurements of treatment plants were compared 

to those of control plants using a one-way mixed-model ANOVA with replication as random 

effect to account for between-trial sources of variation. When treatments were shown to be a 

significant source of variation (95% confidence level), a Tukey Honest Significant Difference 

(HSD) post-hoc test was used to identify treatment-specific differences. Normality was tested 

using the Shapiro-Wilks test on residuals extracted from each ANOVA model. In instances of 

non-normality, the quantile-quantile plots and histograms for the data were examined to visualize 

the distribution of the data and identify any obvious outliers for removal. When necessary, the 

data were log-transformed to be normalized and the above analyses repeated. Statistical analyses 

were not undertaken on node counts because of the low variation between and within treatments.  

 

Section 3: Results 

3.1 Plant growth 

 Seedling establishment normally occurred three to four days after planting. All plants 

were typically flowering by 28DAP, and they completed their life cycles within approximately 

75DAP. Under the growth conditions used, untreated, non-inoculated P. sativum plants usually 

had 3.5, 6.7 and 9.2 nodes at seedling, vegetative and reproductive stages (Table 2.1), 

respectively, and had produced seven to eight seeds in two or more pods per plant at 42DAP. 

Although initially beneficial in assisting seedling establishment, the continued use of 

polyethylene pot covers appeared to induce branching of the shoot across all treatments and 

controls with sometimes up to 60% of plants in a treatment group displaying a branching 

phenotype. Branches were observed developing most frequently from nodes two and three and 

though usually producing only a single extra compound leaf, in some instances two to four new 

nodes developed off of the new branch. As all plants were subjected to similar conditions, these  
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 Table 2.1: Number of nodes, given as a mean ± standard error (n ≥ 10), of plants 

harvested 9, 21 and 42 days after planting (DAP) with or without SRC administered at different 

concentrations. Because differences in node number between treatments were minimal at each 

time point, statistical analyses were not conducted. 

 
Nodes 

 
9DAP 21DAP 42DAP 

Control 3.5 ± 0.2 6.7 ± 0.3 9.2 ± 0.3 

1:20 3.6 ± 0.2 7.1 ± 0.2 9.5 ± 0.2 

1:10 3.8 ± 0.1 7.4 ± 0.3 9.5 ± 0.3 

1:5 3.7 ± 0.1 7.2 ± 0.3 9.6 ± 0.2 
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plants were not excluded from the data set unless they displayed stunted growth. In instances of 

branching, the additional nodes developed on the extra stem were included in the node count for 

that particular plant as the node number was used as an indicator of plant growth, and the plants 

had developed these nodes, just in different areas. A model describing the development of the 

branching phenotype and the influence of polyethylene is given in Appendix B. Given the near-

complete cessation of the branching phenotype when plastic covers were not used, the 

explanation for the branching phenotype was considered to be from the mechanisms in the 

above-mentioned model and not from any experimental treatment. Plastic covers were therefore 

not used for the fourth SRC/rhizobia trial, all of the SRC soil microbiota experiments, and the 

SRC/nitrogen experiment. 

 

3.2 Optimal SRC concentration 

 Growth of P. sativum (cv. Sparkle) plants was supported with no visible nutrient-

deficiency symptoms at all tested ratios of SRC:soil but only when plants were provided with 

supplemental nitrogen. The addition of SRC resulted in significant changes in plant growth across 

seedling (9DAP) and vegetative (21DAP) stages, but these changes were not observed in plants in 

the reproductive stage (42DAP). The number of nodes did not differ between plants at any time 

point (Table 2.1). 

 At 9DAP, only seedlings in the 1:5 treatment group produced significantly more total 

biomass (248 ± 20 mg) than seedlings in the control (203 ± 12) or other treatment groups (1:20 

with 210 ± 11 mg and 1:10 with 201 ± 10mg). At 21DAP, plants in all treatments except for the 

1:20 treatment group invested significantly more biomass in their root systems than those in the 

control group, although all treatment and control plants had similar shoot dry weights (Table  
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 Table 2.2: Growth characteristics of plants at the vegetative stage (21DAP) which had 

been given various concentrations of SRC.  The shoot dry weight (SDW), root dry weight 

(RDW), and shoot:root (S:R) ratio is given as mean ± standard error (n ≥10). Superscripted letters 

indicate either no significant differences (same letter) or significant differences (different letters; 

mixed model ANOVA + Tukey HSD post hoc test at 95% confidence level) between treatment 

groups in that column.  

 
SDW (mg) RDW (mg) S:R  

Control 236.7 ± 34.2
 a

 198.7 ± 52.0
a
 1.41 ± 0.15

a
 

1:20 234.5 ± 24.5 
a
 178.1 ± 17.4

b
 1.30 ± 0.06

a
 

1:10 311.1 ± 34.1
a
 226.8 ± 20.1

bc
 1.32 ± 0.07

a
 

1:5 285.6 ± 39.5
a
 258.9 ± 28.1

c
 1.07 ± 0.07

a
 

 

 

  



 

47 

 

2.2). Calculated shoot:root ratios (Table 2.2), indicative of the allocation of carbon to nitrogen in 

a plant, were also similar at this time. During the vegetative stage, plants treated with SRC 

invested approximately 1.3x more biomass in shoots than in roots. At the reproductive stage 

(Table 2.3), investment in shoots appeared to increase with increasing SRC amounts; however, 

this trend was not significant. At this stage, no significant change in root or shoot dry weights was 

observed between treatment and control plants (Table 2.3). By this stage, plants across all 

treatments had nearly doubled their root dry weights and quadrupled their shoot dry weights 

compared to those plants at the vegetative stage. Interestingly, in the reproductive stage the S:R 

ratio of plants in the 1:5 SRC treatment group tended to be slightly lower than those in other 

treatments and control (Table 2.3), perhaps indicating impaired growth, although this was only 

significantly so when compared to plants in the 1:20 treatment group.  Although root system sizes 

still tended to be increased with the addition of SRC, the large variation in the measured values 

means these differences were not significant. No significant changes in pod dry weight, number 

of pods, or number of seeds per plant were noted (Table 2.4). 

The addition of even small amounts of SRC caused significant increases in soil pH, causing it to 

rise by 1.5-2.0 units over control soils at all measured time points (Figure 2.3). Additionally, 

changes in soil pH over time were observed for both treated and untreated soils (Figure 2.3). Soils 

without SRC showed a constant decrease in pH across the different time points, but the soils with 

SRC had more variable pH values over time. The pH of 1:20 soils increased from 9-42DAP, 

those of the 1:10 soils decreased, and those of the 1:5 soils first decreased from 9-21DAP then 

increased from 21-42DAP.  

 A distinct pattern in the 42DAP soil microorganism counts was observed, where a 

statistically-significant two-fold increase in the number of CFU per gram of soil was seen at the 

1:10 concentration. The heterotrophic microorganism counts of the other tested concentrations 

were not significantly different from those of control (Figure 2.4). Because of the colony growth  
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 Table 2.3: Growth characteristics of plants at the reproductive stage (42DAP) which had 

been given various concentrations of SRC. The shoot dry weight (SDW), root dry weight (RDW), 

and shoot:root (S:R) ratio are given as mean ± standard error (n ≥ 15). Superscripted letters 

indicate either no significant differences (same letter) or significant differences (different letters; 

mixed model ANOVA + Tukey HSD post hoc test at 95% confidence level) between treatment 

groups in that column. 

 

 

 

   

 

  

 
SDW (mg) RDW (mg) S:R 

Control 1071.9 ± 93.7
a
 359.2 ± 18.1

a
 3.02 ± 0.23

ab
 

1:20 1170.9 ± 120.9
a
 337.1 ± 22.3

a
 3.41 ± 0.21

a
 

1:10 1227.4 ± 93.4
a
 405.0 ± 22.2

a
 3.02 ± 0.14

ab
 

1:5 1209.9 ± 91.2
a
 441.0 ± 30.4

a
 2.78 ± 0.13

b
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 Table 2.4: Reproductive stage parameters used to estimate plant yield at 42DAP for 

optimal SRC concentration determination. Pod dry weight per plant (PDW), number of pods 

(Pods), and number of non-aborted seeds (Seeds) are given as means ± standard error (n ≥ 15). 

Superscripted letters indicate no significant differences (same letter; mixed model ANOVA + 

Tukey HSD post hoc test at 95% confidence level) between treatment groups in that column.  

 

   
PDW (mg) Pods Seeds 

Control 718.3 ± 52.1
a
 2.6 ± 0.2

a
 7.7 ± 0.6

a
 

1:20 734.5 ± 87.2
a
 1.9 ± 0.2

a
 6.1 ± 0.9

a
 

1:10 793.0 ± 72.7
a
 2.2 ± 0.2

a
 7.1 ± 0.6

a
 

1:5 925.3 ± 83.9
a
 2.0 ± 0.1

a
 8.3 ± 0.4

a
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Figure 2.3: Variation in soil pH over time depending on SRC treatment. Soil pH was measured at 

9, 21 and 42 DAP, and is shown as a mean ± standard error (n ≥ 15). Significant differences 

between treatment groups at each time point are indicated by different letters (mixed model 

ANOVA + Tukey HSD post hoc test at 95% confidence level), whereas non-significant 

differences are indicated by identical letters. 
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Figure 2.4: Colony-forming-units per gram of fresh soil collected at 42DAP. Counts chosen for 

the analysis were taken at 48h after samples were plated. Superscripted letters indicate either no 

significant differences (same letter) or significant differences (different letters; mixed model 

ANOVA + Tukey HSD post hoc test at 95% confidence level) between treatment groups. The 

circle indicates an outlier defined as being greater than 1.5x the interquartile distance for that 

treatment group. 
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patterns, only the 10
-1

 dilution at 48h after plating was analysed over the other concentrations and 

time periods. In the other dilutions and time periods, colony growth was either insufficient (<30 

colonies per plate) or excessive (<300 colonies per plate) with the latter resulting in colonies 

coalescing together (Figure 2.1).  

 Because of the equivalent or greater growth/yield, the neutral soil pH and the dramatic 

increase in soil microorganism counts, the 1:10 ratio of SRC:soil was considered as the optimal 

concentration and used in all further experiments. 

3.3 Enhancement of plant growth and nodulation with SRC treatment 

 The supplementation of soils with SRC had a dramatic effect on nodulation. An almost 

two-fold increase in the number of nodules was observed in 1:10 SRC-treated plants when 

compared to non-treated controls (Table 2.5).This translated into a significant increase in the total 

nodule biomass, although individual nodule dry weights were similar between SRC-treated and 

non-treated plants. Non SRC-treated plants only nodulated within the upper 10cm of the root 

system (Figure 2.5a), as is expected from the P. sativum/R. leguminosarum combination 

(Remmler et al. 2014). The increase in nodule number of SRC-treated plants is likely due to the 

unexpected development of a second nodulation zone that was observed in the lower 10cm of the 

roots of many SRC-treated plants (Table 2.5; Figure 2.5c).  

 The three measures of nodulation efficiency, plant return on construction cost, specific 

nodule dry weight, and specific nodulation indicated higher efficiencies in RSRC
+
 plants than in 

RSRC
-
 plants (Table 2.6), though only the first two parameters were significantly different. A 

lower plant return on construction cost indicates that SRC-treated plants were able to gain more 

biomass from their investment in the symbiosis than those plants without SRC, and a higher  
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Table 2.5: Nodulation parameters of inoculated, 28 day-old plants grown either without SRC 

(RSRC
-
) or with SRC (RSRC

+
). Values are means ± standard error (n ≥ 20). Upper and lower 

nodules are defined as those formed in the upper or lower 10cm of the root system. Individual 

nodule dry weight (DW) per plant is calculated by dividing total nodule dry weight by total 

nodule number. Significant differences between treatments are indicated by superscripted 

differing letters (mixed model ANOVA + Tukey HSD post hoc test at 95% confidence level). 

Treatment 
Upper 

Nodules 

Lower 

Nodules 

Total 

Nodules 

Total Nodule 

DW (mg) 

Indv. Nodule 

DW (mg) 

RSRC
-
 74 ±  7.7

a
 0 ± 0.0

a
 74 ±  7.7

a
 28.5 ± 2.4

a
 0.469 ± 0.078

a
 

RSRC
+
 87 ± 11.4

a
 45 ± 14.4

b
 132 ± 8.9

b
 48.4 ± 4.3

b
 0.393 ± 0.037

a
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Figure 2.5: Comparison of nodulation zones in non SRC-treated (RSRC
-
) and SRC-treated 

(RSRC
+
) 28 day-old plants which were inoculated with Rhizobium leguminosarum bv. viciae 

128C53K. Only a single nodulation zone (indicated by brackets) developed on the roots of 

inoculated plants without SRC (a). The plant on the far left of panel (a) did not develop any 

nodules. On RSRC
+
 plant roots, an upper nodulation zone (b) was developed and was followed by 

a lower nodulation zone developed near the bottom of the root system (c). All plant root systems 

were approximately 30cm long, and the scale bar is 10cm.      
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 Table 2.6: Calculated rhizobia/legume efficiency values for no-SRC (RSRC
-
) and SRC-

treated (RSRC
+
) pea plants at 28DAP. Plant return on construction cost indicates how much the 

plant is able to grow given its investment in nodulation, whereas the specific nodule dry weight 

and specific nodulation are two ways of showing investment in nodulation based on the size of 

the root system. Higher plant return costs signify a less-efficient symbiosis, whereas higher 

specific dry weights and specific nodulation point toward a more-efficient symbiosis (Macdonald 

2011). Values are a mean ± standard error (n ≥ 14), and significant differences between 

treatments are indicated by superscripted differing letters (mixed model ANOVA + Tukey HSD 

post hoc test at 95% confidence level). 

Treatment 
Plant return on 

construction costs 

Specific nodule dry 

weight 
Specific nodulation 

RSRC
-
 17.73 ± 1.07

a
 0.34 ± 0.02

a
 1015.30 ± 160.09

a
 

RSRC
+
 13.57 ± 0.62

b
 0.46 ± 0.03

b
 1270.32 ± 124.36

a
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 Table 2.7: Growth parameters of 28DAP plants that were either inoculated with rhizobia 

(RSRC
-
) and not given SRC, inoculated and given SRC (RSRC

+
), or not inoculated but given 

SRC and nitrogen solution (NSRC
+
). Mean ± standard error values are given (n=7 for NSRC

+
 and 

n ≥ 21 for remainder). Sample size is smaller in NSRC
+
 treatment due to rhizobial contamination 

of plants in that treatment group; the contaminated plants were not included. NSRC
+
 is included 

as a non-rhizobial control to examine pattern of root/shoot growth with SRC as root dry weight is 

affected by SRC. Significant differences between treatments are indicated by superscripted 

differing letters (mixed model ANOVA + Tukey HSD post hoc test at 95% confidence level).  

Treatment Shoot Dry Weight (mg) Root Dry Weight (mg)  Number of Nodes 

RSRC
-
 405.4 ± 28.3

a
 83.3 ± 5.7

a
 10 ± 0.3

a
 

RSRC
+
 537.6 ± 32.8

b
 106.5 ± 7.8

b
 12 ± 0.5

a
 

NSRC
+
 528.1 ±54.5

b
 171.4 ± 9.2

c
 11 ± 0.8

a
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specific nodule dry weight indicates that, when the size of the root system is accounted for, SRC-

treated plants had more nodule biomass than the plants that were not given SRC. Although the 

three measures suggest increases in symbiotic efficiency, RSRC
+
 plants did not grow larger than 

NSRC
+
 plants. However, both RSRC

+
 and NSRC

+
 plants had higher root and shoot biomasses 

than RSRC
-
 plants (Table 2.7). 

3.4 SRC, nodulation, and plant nutrition 

 Three distinct trends were noticed during investigation of the effect of combined 

SRC/rhizobia on plant chlorophyll amounts, the most important of which regards chlorophyll b. 

First, regardless of treatment, age of plants, or node, the chlorophyll a (chl a) levels were 

constantly around 0.6mg/g of fresh tissue weight (Figure 2.6). Second, chlorophyll b (chl b) was 

the pigment most affected by the nitrogen treatments, though its concentration was typically 

around 0.7-0.8mg/g of fresh tissue weight. In all time points/nodes, the plants given no nitrogen 

sources had the lowest chl b levels, whereas the plants in the nitrogen and rhizobia treatments had 

similar chl b levels (Figure 2.6). One explanation for the effect of available nitrogen on chl b is 

that, under conditions of nitrogen deficiency, chl a levels are maintained at the expense of chl b 

levels. Chl b is a presumed accessory pigment that acts to transfer light energy to the primary 

photosynthetic pigment chl a (Taiz and Zaiger 2006). This is reflected in the biosynthetic and 

catabolic pathways of chl b: chl b can only be synthesized from chl a, and when it is broken down 

it is first transformed into chl a (Rüdiger 2002; Hörtensteiner and Kräutler 2011). When nitrogen 

is limiting, the plant must balance photosynthetic nitrogen need with metabolic nitrogen need. It 

is likely that, under N-limiting conditions, chl b is broken down to yield nitrogen and chl a is kept 

to maintain the photosynthetic capability of the plant.  Third, the xanthophylls/carotenoids were 

generally not produced in high enough quantities to be detected except in the N
-
SRC

+
 treatment 

(Figure 2.6). An exception to this exists in node 4 at 28DAP, where xanthophyll/carotenoid levels 

were similar in N
-
SRC

+
 plants and RSRC

-
 plants. 
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Figure 2.6: Mean levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and 

xanthophyll/carotenoids (Xanth) from fully developed (node 4) and more-recently developed 

(node 6) leaflets. Four treatment groups were examined at both 21 and 28 days after planting 

(DAP): plants given a nitrogen solution and SRC (NSRC
+
), plants given SRC but no nitrogen (N

-

SRC
+
), plants inoculated with rhizobia (RSRC

-
) and without SRC, and plants inoculated with 

rhizobia and given SRC (RSRC
+
). Because of small trial numbers, statistical analyses were not 

conducted. Measurements were taken from at least 8 plants per trial for each treatment, and were 

averages of 2-4 measurements per node per treatment.  
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 The observed xanthophyll/carotenoid trends fit well with the role of these pigments as 

photo-protectants to dissipate excess light under low nitrogen conditions (Logan et al. 1999) 

and/or during leaf turnover to maximize nutrient reallocation from senescing leaves (Hoch et al. 

2001).  

  The quantity of shoot nutrients was assessed in two different comparisons: nutrient 

levels between inoculated plants with and without SRC to show the effect of SRC addition, and 

between inoculated and non-inoculated plants given SRC to show the effect of nodulation. In the 

first comparison showing the effect of SRC addition, nodulated plants without SRC (RSRC
-
) had 

significantly higher concentrations of N, P, S, Fe, B, and Zn, whereas only Ca levels were 

significantly higher in nodulated SRC-treated plants (RSRC
+
; Figure 2.7). The K, Mg, Na, Al, 

and Mn amounts were not affected by SRC treatment. Therefore, except for Ca, plant 

macronutrient levels were higher when inoculated plants were provided with a low-N chemical 

fertilizer than when plants were given only SRC. In the second comparison showing the effect of 

nodulation on nutrient levels of SRC-treated plants, a curious difference is apparent. The levels of 

three nutrients, including nitrogen, were significantly different between RSRC
+
 and NSRC

+
 

plants, indicating an effect of inoculation on plant nutrition (Figure 2.7). On one hand, the N and 

K shoot concentrations were significantly higher in shoots of RSRC
+
 plants than in those of 

NSRC
+
 plants. On the other hand, Zn was higher in NSRC

+
 plants. The shoot levels of copper 

were also examined for all plants; however, concentrations were often below the detection limit 

(<5ppm) and so were not included in the analysis.  
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Figure 2.7: Dried shoot nutrient-content levels from 28 day-old plants (averages with lines 

indicating standard error; n=4 for NSRC
+
 due to rhizobial contamination, and n=6 for RSRC

-
 and 

RSRC
+
, over two trials). Three treatment groups were examined: plants given a nitrogen solution 

and SRC (NSRC
+
), plants inoculated with rhizobia (RSRC

-
), and plants inoculated with rhizobia 

and given SRC (RSRC
+
). Although copper was also examined, levels were typically below the 

detection limit (<5ppm) and these results were therefore not included. Significant differences 

between treatment groups for each element are given by different letters (mixed model ANOVA 

+ Tukey HSD post hoc test at 95% confidence level), whereas non-significant differences are 

given by identical letters. 
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Section 4: Discussion 

4.1 SRC supports plant growth 

 Here it is reported that SRC mixed with an artificial soil is capable of acting as a 

nutrient source for the growth of pea plants under laboratory conditions. With the addition of 

supplemental nitrogen or rhizobial inoculant, plants given SRC were able to complete their life-

cycle with no visible nutrient deficiency symptoms, such as leaf yellowing/necrotic spots 

indicative of magnesium deficiency or leaf-edge scorching symptomatic of potassium 

deficiency. Plants with SRC had growth and yield similar to those plants given a full chemical 

nutrient solution. After testing several concentrations of SRC, it was found that the ratio of 1:10 

SRC:soil (i.e., 5.42 kg/ ha) was the most promising for use in agricultural systems. 

Interestingly, this ratio is the one recommended by Boreal Agrominerals based on the 

stoichiometry of the mineral (John Slack, personal communication 2014).With this ratio, plant 

growth was slightly higher than that of control plants, the acidity of the soil was neutralized, and 

a significant increase in the number of culturable soil microorganisms was found. To 

demonstrate that SRC could be used as a nutrient source, externally-provided nutrient sources 

were minimized in these experiments by limiting SRC-treated plants to deionized water or 

nitrogen solution (prepared with deionized water). However, the Turface™ and vermiculite soil 

mixture could have weathered during the experiments, and thus the soil components cannot be 

excluded as potential sources of nutrients. Given their composition, Turface™ could have 

provided plants with aluminum and iron (Turface™ composition report 2013), and vermiculite 

may have released magnesium and potassium (Kalinowski and Schweda 2007).  

 Unlike typical chemical fertilizers which are processed to increase solubility of 

nutrients, SRC is not processed or chemically-activated (John Slack, personal communication 

2014). Therefore, in our study, it is assumed that physical or biological weathering of SRC must 
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have occurred for nutrients to become available for plant growth. Because temperature and 

pressure were not altered in these experiments, the primary abiotic means by which mineral 

dissolution would have been promoted is soil solution acidity (Guidry and Mackenzie 2003; 

Kalinowski and Schweda 2007; Welch et al. 2010), though consistent watering may have 

contributed (Berner 1978; Palandri and Kharaka 2004). The dissolution of minerals is enhanced 

the most at low bulk solution pH (<5), well below the levels observed in treatment soils (Figure 

2.3), and thus biological weathering mechanisms are suggested to have been the major 

contributors. Plant roots release compounds such as organic acids which can affect nutrient 

availability in the rhizosphere (Dakora and Phillips 2002; Bertin et al. 2003). Soil 

microorganisms can also increase solubility of nutrients by creating acidic microsites on the 

surface of minerals (Banfield et al. 1999). Cumulatively, these microsites help in providing 

nutrients to the soil solution. Some examples of increased nutrient availability from biological 

action include the release of K
+
 and Mg

+2
 from biotite by bacteria and fungi (Hopf et al. 2009), 

the liberation of PO3
-
 from apatite by mixed bacterial and fungal cultures (Welch et al. 2010), 

and the release of Ca
+2

 from calcite by Burkholderia fungorum  (Jacobson and Wu 2009). 

However, microorganisms may also negatively affect the breakdown of minerals in some 

instances, as seen with Shewanella oneidensis biofilms which inhibit the dissolution of calcite 

(Lüttge and Conrad 2004). The minerals mentioned above (biotite, apatite, and calcite) are all 

major components of SRC.  

 

4.2 SRC mediates a feedback loop between soil microorganisms and plant roots 

 In order for microbial breakdown of minerals to occur, soil conditions must be 

conducive to the growth of microorganisms. Growth of soil bacteria is often limited by carbon 

(Aldén et al. 2001; Demoling et al. 2007; Hobbie and Hobbie 2013) or co-limited by carbon and 

nitrogen (Demoling et al. 2007). Phosphorus can also be limiting under certain conditions such 
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as in fertilized or calcareous soils (Aldén et al. 2001; Griffiths et al. 2012). Soil microorganisms 

are capable of utilizing a wide variety of carbon sources, from carbohydrates and amino acids to 

aliphatic and aromatic compounds (Garland and Mills 1991; Campbell et al. 1997), many of 

which are exuded by plant roots. Root systems are major contributors to the soil carbon pool 

(Rasse et al. 2005) and it appears as though microorganism population structures are dictated by 

the exudate patterns of different plant species (Campbell et al. 1997; Grayston et al. 1998; 

Morgan et al. 2005).  

 The following is presented to explain the increased root growth observed upon addition 

of SRC to soils. In contrast to the nutrients of the chemical fertilizer solution, the nutrients 

within SRC were less accessible and had to be actively sought out by the plants through 

expansion of root systems. Root systems are developmentally ‘plastic’ and plants can 

selectively increase root growth to exploit high nutrient patches (Hodge 2004). All nutrients, 

with the exception of nitrogen that was added through irrigation, were homogenously 

distributed throughout the soil mixture, and a larger root system would have allowed plants to 

more effectively gather nutrients through increased contact with SRC.  

 I propose the following model to describe the mutually-beneficial interaction of 

microbes and plants; it is an expansion of a model presented by Banfield et al. (1999) 

describing the fungal-algal symbiosis within lichens and its influence on mineral weathering. 

The soil microorganism populations preferentially colonize the nutrient-rich SRC particles, 

which also contain the nutrients sought out by plant roots. When the root encounters the 

inhabited SRC particle, the carbon it exudes allows the local microorganism population to 

increase. The larger microorganism populations, provided they are not limited by available 

mineral surface area or other nutrients, are then able to break down SRC more rapidly, releasing 

nutrients that can be taken up by both microbes and plants. With improved nutrient uptake from 

the root, plant growth is promoted, and further expansion of the root system occurs. The 
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mineral-rich SRC particles thus act as a mediator between microorganisms and plants, and help 

to establish a positive-feedback mechanism between the two organisms. The effect of this 

positive feedback can be seen in the 1:10 SRC:soil treatments, where a larger root system likely 

provided sufficient carbon to remove the carbon limitation on the microorganism populations 

within the entire pot-bound soil system.  

 To test this model, a solution-based examination of microbial SRC dissolution could be 

performed. Microorganisms would be cultured in a media solution where the majority of 

nutrients are provided only as un-weathered SRC, then microorganism growth could be 

assessed both over time and with the addition of carbon compounds that mimic the natural 

exudates of roots. The demonstration that, when compared to abiotic weathering, the addition of 

microorganisms can enhance the dissolution of SRC would provide strong evidence to support 

the proposed model. This could be further expanded by measuring whether or not the 

microorganism-based dissolution is increased with the addition of carbon compounds. One 

evidence against this model is the decrease in both shoot biomass and culturable 

microorganisms despite root system increases in the 1:5 SRC:soil ratio. However, in that 

instance, the amount of SRC is double that of the optimal concentration, i.e., twice the amount 

of calcium is present in the soil system. This is reflected in the significantly increased soil pH at 

two of the three examined time points. The pH levels measured at this concentration are 

consistent with levels associated with a loss in soil microorganism biodiversity observed by 

Lauber et al. (2009), though without closer examination of the microbe-soil-plant system used 

here it is impossible to determine the mechanism by which SRC may inhibit microorganism and 

plant at high concentrations. Increases in soil moisture level can increase the number of 

culturable soil microorganisms (Lund and Goksøyr 1980), and this may also have played a role 

here. Because there was no positive trend linking soil microorganism counts with increasing 

amounts of SRC, I tentatively conclude that the promotion of soil microorganisms is the result 
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of the optimal SRC concentration, although I acknowledge that the combination of several other 

factors (e.g., high pH, water activity, etc…) may have been influential to some degree.  

4.3 SRC enhances the efficiency of the rhizobia-legume symbiosis 

 Evidence that SRC can enhance mutually-supportive interactions between plants and 

microorganisms was also seen when plants were inoculated with rhizobia. Plants with SRC and 

rhizobia displayed significant increases in both root and shoot systems when compared to 

inoculated plants that were only given low-nitrogen solution (Table 2.7). The inclusion of SRC 

also resulted in a nearly two-fold increase in the number of nodules compared to control plants 

(Table 2.5). Part of the reason for this increase in nodulation is that a second nodulation zone 

was seen in SRC-treated plants, a situation that can occur in pea when plant growth requires 

more than the available reserves of nitrogen (Voisin et al. 2010).  

 Nodules are strong carbon sinks (Hacin et al. 1997), and supernodulating mutants 

where the autoregulation of nodulation is impaired have lower growth rates than wild type 

plants (Sagan and Duc 1993). This decrease in plant growth is also seen in wild-type plants 

inoculated with different strains of rhizobia because some rhizobia are more costly than others 

for the plant to partner with (Skøt 1983). Although a control treatment where plants were not 

given SRC or rhizobia was not used here, an approximation can be made to estimate the cost of 

nodulation on pea growth. Because no significant differences were seen between the shoots of 

non-inoculated plants grown with and without SRC, the SRC-treated, non-inoculated control 

can be used as a baseline to compare roughly the cost of nodulation on plant growth. With this 

approximation in mind, a decrease in the shoot dry weight is apparent between those plants 

given nitrogen and SRC and those inoculated with rhizobia and given no SRC (Table 2.7). What 

is especially curious is that there are no significant differences between inoculated (RSRC
+
) and 
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non-inoculated plants given SRC (NSRC
+
), i.e., there does not appear to be a cost of nodulation 

for the plant when SRC is part of the soil mixture.  

  Two non-mutually exclusive explanations are possible to describe the lack of 

nodulation cost: first, the efficiency of the symbiotic interaction is increased (more nitrogen 

gained for carbon invested) by the addition of SRC, and second, the plant is more 

photosynthetically active because of SRC addition and is thus able to better cope with the 

carbon loss associated with nodulation. Three calculations of symbiotic efficiency were 

performed to help distinguish between these two possibilities: plant return on construction cost, 

specific nodulation, and specific nodule dry weight. All three calculations indicated increases in 

the efficiency of the rhizobia-legume symbiosis in the presence of SRC, though only plant 

return on construction cost and specific nodule dry weight were significantly different from 

those of plants not given SRC (Table 2.6). These results suggest that plants grown with SRC 

gain more nitrogen per amount of carbon invested in nodulation (plant return on construction 

cost), and, when root system size is accounted for, produce larger nodules (specific nodule dry 

weight) than those growth without SRC.  

 It seems that the efficiency of nitrogen fixation may have been enhanced by the more 

nutrient-rich soil environment provided by SRC. Metal ions such as iron, copper, manganese, 

zinc, and nickel play important roles in nitrogen fixation (González-Guerrero et al. 2014) and so 

improved metal uptake could have affected the efficiency of the nodules on SRC-treated plants. 

Iron is an integral part of both the nitrogenase enzyme complex responsible for fixing 

atmospheric nitrogen (Scott et al. 1983) and the protein leghaemoglobin that minimizes the 

detrimental effect of oxygen on nitrogenase (Harutyunyan et al. 1995). Copper is a cofactor of 

rhizobial cytochromes involved in energy metabolism (Seliga 1993) and, along with manganese 

and zinc (Rubio et al. 2007), is part of the superoxide dismutase complexes that alleviate the 

amount of free radicals produced during nitrogen fixation. However, the aforementioned metals 
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were not found to be in higher concentrations in the shoots of SRC-treated inoculated plants 

than in those of non-SRC treated plants making it difficult to establish a direct connection; 

however, the levels of metals in the root were not examined. The shoot concentrations of zinc 

were significantly lower in inoculated, SRC-treated plants than in non-inoculated SRC plants, 

and this metal may have been preferentially allocated to the root systems to benefit nodulation. 

Aside from plant return on construction cost, the other measure of nodulation efficiency that 

was significantly different in SRC-treated plants was that of specific nodule dry weight which 

indicated that in those plants more photosynthetic carbon was available to be invested in larger 

nodules than in non SRC-treated plants. Although nitrogen levels were higher in the shoots of 

plants that were not given SRC, overall chlorophyll levels between SRC-treated and non SRC-

treated plants were similar, implying equivalent photosynthetic capabilities between plants in 

both treatments. It is known that carbon investment in nodulation is positively linked with the 

plant’s need for nitrogen and available carbon (Voisin et al. 2010). When this is taken together 

with the presence of a second wave of nodulation in SRC-treated plants, it suggests that SRC-

treated plants were nitrogen-limited in their growth and yet had adequate carbon to allocate to 

symbiotic nitrogen production. Shoot nitrogen levels of inoculated plants in both treatments 

were higher than those of plants given only chemical nitrogen, which indicates that nodulation 

was capable of providing more than sufficient nitrogen to maintain plant growth. The shoot 

nitrogen levels may, however, simply indicate that plants provided with chemical nitrogen were 

nitrogen-limited, but not nitrogen-deficient.   

 Therefore, improved nitrogen efficiency and improved photosynthesis both likely 

explain the increase in growth. When nitrogen fixation efficiency is increased, more nitrogen is 

available to invest in photosynthesis and more photosynthetic carbon is produced. When growth 

is limited by nitrogen, this carbon can be allocated back to the rhizobia in the nodule, increasing 

the levels of nitrogen fixation.  
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4.4 Conclusions 

 Based upon the results obtained from these experiments, it is concluded that SRC can 

be used as a nutrient source for plants, at least under the conditions examined. Because pea 

growth is supported by SRC supplementation and enhanced with the combination of 

rhizobia/SRC in an artificial soil mixture, it is suggested that SRC could be a strong candidate 

for use in sustainable agricultural practices. However, caution must be employed in 

recommending the use of SRC due to its high levels of calcium and the effect this calcium has 

on soil pH. If the plants being grown are calcifuges, or the soils in question are alkaline, then 

SRC should not be applied.  To properly take advantage of SRC in promising agricultural 

settings, further research that more closely examines the role of soil microorganisms, the effect 

of SRC on other rhizobia-legume pairings, and the nitrogen-fixation rates associated with those 

pairings are recommended. Additional areas for future experiments are the mechanism(s) by 

which SRC enhances nodulation, and the use of combined SRC plus organic/chemical nutrient 

sources, especially in a field setting. With knowledge of the various means by which SRC 

affects the microbe-soil-plant system, other agrominerals with similar stimulatory properties can 

be discovered and utilized.  
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Chapter 3: Preliminary findings on how storage affects microorganisms in SRC 

Section 1: Rationale 

 After SRC is harvested from the deposit, it is stored uncovered for a number of years, 

packaged, and then transferred to an unheated warehouse (Figure 3.1). Of note, SRC is never 

sterilized or pasteurized prior to sale (John Slack, personal communication 2014).  Most soils 

have a diverse microbiome including arbuscular-mycorrhizal (AM) fungi (van der Heijden et al. 

1998; Kernaghan 2005), nitrogen-fixing symbiotic bacteria (Guimaraes et al. 2012), and plant 

growth-promoting bacteria (PGPB; Kaplan et al. 2013). Because of this knowledge, we had to 

alter the initial hypothesis, that storage conditions do not affect SRC usefulness. Our new 

hypothesis is that SRC contains beneficial microorganisms, and that these microorganisms are 

negatively affected by the storage conditions of SRC. Given the importance of soil 

microorganisms to the potential usefulness of SRC in agriculture (chapter two), we thought it 

imperative to assess whether microorganisms are present in packages of SRC and to determine, if 

present, whether the microorganisms affect plant growth. Furthermore, all of the experiments 

conducted in chapter two of this thesis were completed using sterilized SRC and soils. Although 

this was necessary to minimize contamination and to maintain conditions as equal as possible 

between trials and treatments, the soil systems used do not accurately reflect agricultural 

conditions.  Because of the above, I therefore conducted some preliminary experiments to 

examine the microorganisms within SRC and how these might be affected by storage conditions. 

These experiments were based around the following objectives, whi 

1) To assess whether packaged SRC contains viable root symbionts and PGPB using pea as a trap 

plant 

2) To determine whether the behaviour of root symbionts is altered in the steps between the 

harvesting and the sale of SRC  
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Figure 3.1: Overview of the SRC distribution procedure. Extraction of SRC from the deposit 

takes place only every few years as the remote location of the deposit limits mining. Therefore, 

large amounts of SRC are collected during each extraction and are kept as an uncovered, outdoor 

storage pile (I). SRC is then removed as-needed from the storage pile and packaged (II). Once in 

bags, it is kept in an unheated building until delivery to the distributor or consumer (III). 
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Section 2 Materials and methods 

2.1 Trap pea plants grown with non-sterile SRC 

 2.1.1 Preliminary trial 

 A small preliminary trial was conducted using plants grown for 21 days after planting 

(DAP) in soils supplemented with 1:10 SRC. Two treatments, one with non-sterile SRC (P-

NOST) and one with sterilized SRC (P-STER), were used. For each treatment, six plants were 

grown three to a pot in two pots (2624mL volume). Plants were grown in a 1:1 mix of 

vermiculite:Turface™ (as per §2.2). To fulfill plant nitrogen requirements, plants in both 

treatments were given 2.5mM NH4NO3 nitrogen solution as part of their watering. Only 

root/shoot dry weight, and nodule number were measured. Note that in this preliminary trial, I 

used a different bag of SRC than in the other trials in this chapter. Although the subsequent trials 

had slightly different conditions, the preliminary trial is included here to demonstrate how 

different bags of non-sterile SRC can lead to different results.  

 

 2.1.2 Main trials with non-sterile SRC 

 Pea plants were grown and the soils were prepared as per §2.2. Three experimental 

groups were used: one where both soil and SRC were autoclaved (STER), one where only the soil 

was autoclaved (NOST; SRC added after soil cooled) and one where sterile soil was used but 

plants were given chemical nutrients (CF) instead of SRC. All SRC was given in the 

recommended 1:10 SRC:soil ratio, and was from the same retail SRC package. This package was 

different from the one used in the preliminary trial. The STER group plants received water and N-

solution, the NOST group plants received only water, and the CF group plants received water, 

nutrient solution, and chemical fertilizer (N:P:K, 17:5:19). Ten plants were harvested at 21DAP 
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to determine their shoot/root dry weights, number of nodes (chapter 2, §2.2), nodule numbers 

(chapter 2, §2.3), and number of colony-forming units (CFU) per gram of soil (chapter 2, §2.2). 

Six to seven (depending on survival) additional plants were left to seed (approx. 70 days). Seeds 

were collected once pods had dehisced, and were left to dry at room temperature for at least two 

weeks prior to weighing. Only fully formed seeds were collected, as in chapter 2, §2.2.  

 

 2.1.3 Assessing the colonization of trap plant roots by rhizobia and mycorrhizal fungi  

  The colonization of trap plant roots by rhizobia was assessed through the counting of 

nodules, the recording of the nodule locations, and the observation of basic nodule morphology. 

Only functional nodules, indicated by a red or pink colouration (Bisseling et al. 1978), were 

counted. Individual root systems were divided for nodule location record along the primary root 

according to distance from cotelydons: the 10cm distal from the cotelydons was defined as the 

“upper” area, the 10cm distal to that was defined as the “middle” area, and the last 10cm or more 

of the root was defined as the “lower” area. The upper area corresponds to where the single 

nodulation zone typical of rhizobia-pea associations is expected (Bollman and Vessey 2006; 

Macdonald 2011). Following nodule characterization, lateral roots were removed from the root 

systems and cut into 3cm segments. Of these, seven segments were randomly chosen to be 

examined for mycorrhizal colonization. The remaining lateral roots and the primary root were 

then dried for measuring the root biomass. The presence of mycorrhizal fungi in the root system 

was determined by microscopy on segments cleared by KOH and then stained using the ink-

vinegar staining method (Vierheilig et al. 1998).  
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2.2 Assessing the rhizobial and mycorrhizal colonization of plants collected from the SRC deposit

 Native plants that were growing on the SRC deposit were also assessed for root 

colonization by rhizobia and mycorrhizal fungi. This was done to estimate whether potential 

mutualistic microorganisms were actually present in the SRC deposit, and these plants were 

treated as a positive control to the trap plants grown above. During two visits to the SRC mining 

site, plant specimens from a variety of families were randomly collected. All collected plants 

were growing directly on exposed SRC. In addition, one legume was collected from the storage 

pile (see Figure 3.1). 

 

2.3 Statistical analysis 

 The two main trials consisted of 20 vegetative growth plants plus ~12 plants that were 

left to seed per treatment, whereas the preliminary trial consisted of only 6 plants per treatment. 

Because of the small sample sizes of the preliminary treatment, statistics were not conducted on 

these data. Where applicable, treatments were compared using a one-way mixed-model ANOVA 

with replication as random effect as per chapter 2. No statistical analysis was conducted for data 

from the plant species collected from the mine.  

 

Section 3: Results 

3.1 Plant growth/yield and soil microorganism counts  

 No differences in shoot or root biomass allocations were found between STER and 

NOST plants, though roots in both of these treatments were significantly more extensive than 

those of CF plants (Table 3.1). In the preliminary trial treatments, plants grown with sterile SRC 

tended to be larger than those grown with non-sterile SRC as illustrated by their shoot and root 
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dry weights (Table 3.1).   Curiously, the biomass of plants during the two main trials was 

different from that of plants assessed in the determination of optimal SRC (chapter 2). The root 

systems of plants in this set of experiments were nearly two times smaller than those of plants 

grown in the earlier set (chapter 2). However, despite the differences seen in roots, plant shoots 

were approximately equal between the two sets of experiments. The addition of SRC, regardless 

of sterilization, resulted in plants producing fewer seeds than plants given chemical fertilizer 

(Table 3.2). These fewer seeds were, however, significantly larger than those produced by plants 

given chemical fertilizer (Table 3.2). Plants with non-sterile SRC may have produced slightly 

more seeds than plants with sterile SRC; however, this needs to be confirmed with additional 

trials. At 21DAP, STER soils harboured nearly twice as many culturable microorganisms than 

NOST soils (Table 3.1).  
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 Table 3.1: Growth characteristics of 21 day-old pea plants from all trials either given 

chemical fertilizer (CF), given sterilized-SRC and nitrogen solution (STER) or given only non-

sterile SRC (NOST). For comparison, results from the preliminary trial treatment groups are 

included and prefaced with ‘P-’ (n = 6). The shoot dry weight (SDW), the root dry weight 

(RDW), and the number of nodes are given as a mean ± standard error (n ≥ 20). The number of 

colony-forming units per gram of fresh soil is also included to indicate microbial abundance in 

soils supplemented with sterilized or non-sterilized SRC (n=10 plates). Superscripted letters 

indicate either no significant differences (same letter) or significant differences (different letters; 

mixed model ANOVA + Tukey HSD post hoc test at 95% confidence level) between treatment 

groups in that column. ND = not determined.  

 

 

 

 

 

 

 

  

 

SDW (mg) RDW (mg) Nodes CFU/g soil 

CF 255.6 ± 19.5
a
 85.0 ± 6.9

a
 8.5 ± 0.2 ND 

STER 291.7 ± 23.4
a
 117.3 ± 9.3

b
 8.6 ± 0.2 4540 ± 254

 a
 

NOST 290.9 ± 12.7
a
 114.3 ± 6.1

b
 8.2 ± 0.3 2250 ± 378

 b
 

P-STER 326.3 ± 161.3 161.2 ± 125.2 ND ND 

P-NOST 315.7 ± 26.0 119.0 ± 9.2 ND ND 
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 Table 3.2: Yield characteristics from plants given nutrient solution and chemical fertilizer 

(CF), sterilized SRC and nitrogen solution (STER), or non-sterile SRC only (NOST). Individual 

seed dry weight is an average (± standard error) of between 51-103 seeds produced by 12-13 

plants across two trials. Seeds per plant were calculated dividing the total number of seeds by the 

number of plants in that treatment and as such, no statistical analysis was conducted for this 

parameter. Superscripted letters indicate either no significant differences (same letter) or 

significant differences (different letters; mixed model ANOVA + Tukey HSD post hoc test at 

95% confidence level) between treatment groups. 

 

 

  

 

Seed DW (mg) Seeds/plant 

CF 153.3 ± 4.8
a
 6.4 

STER 225.3 ± 7.6
b
 3.9 

NOST 227.4 ± 11.5
b
 4.5 
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3.2 Symbiotic characteristics of non-sterile SRC trap plants and comparison with plants collected 

from the mine. 

 The 21DAP pea plants grown in non-sterile SRC formed nodules that were typically in 

the upper and middle portions of the root systems (5 ± 3 and 10 ± 3, respectively).  No nodules 

were developed in the lower 10
+
cm of the roots. The total number of nodules formed (15.0 ± 4.5) 

was low compared to that of the plants grown for the preliminary trial (111 ± 19) and to that of 

plants of the same age that had been grown in sterile SRC and had been inoculated with 

Rhizobium leguminosarum (140 ± 15 nodules at 17DAI;  data not shown). The nodules formed on 

NOST plants in the two main trials displayed three different morphologies. In addition to “single” 

and “multilobed” nodules similar in their morphology to those seen earlier (Figure 2.2, chapter 2), 

a ‘complex multilobed’ type was observed (Figure 3.2a). These complex nodules were flatter and 

more fan-shaped than the other nodules. Additionally, there were sometimes nodules which were 

pale or green in colour, and without discernible meristems (Figure 3.2b).  

 A total of seven plants were collected from the SRC mine area: six from the SRC deposit 

and one from the SRC storage pile. Of these seven, most were mycorrhizal (Table 3.3); some 

examples are Comptonia peregrina (Figure 3.3a) and the Poaceae family grasses (Figure 3.3b). 

Neither the trap pea plants grown with non-sterile SRC nor the M. alba were colonized by 

mycorrhizal fungi, though both species are known to form mycorrhizal associations (Geil et al. 

2001 and Lum et al. 2002, respectively). Because C. peregrina (family Myricaceae) is known to 

form nodules with actinorhizal bacteria of the genus Frankia (Family Frankiaceae; Benson and 

Silvester 1993), the roots of these plants were inspected for the presence of these nodules. Thus, 

two of the collected plant species, M. alba and C. peregrina, had numerous nodules that visually 

appeared to be functioning normally (see Figure 3.3c and d, respectively). Although the trap pea 

plants were poorly nodulated overall, the majority of these (15/20) had nodules on their roots. All 

six plants in the preliminary trial were nodulated, and the nodules were typical in appearance. 
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Figure 3.2: Photographs illustrating the nodule morphologies observed on pea roots grown with 

non-sterile SRC. Typically, pea forms single (a; S) or multilobed (a; ML) nodules. Single nodules 

have a cylindrical, elongated shape with a visibly-red leghaemoglobin core and lightly-coloured, 

terminally-positioned meristem (*). Multilobed nodules are characterized by having two or more 

meristems. Complex multilobed nodules (a and b; CML) were less elongate and more fan-shaped 

than the other nodule types, and in some cases appeared to be senescent. The complex nodules 

were often much lighter in colour than the other nodule types. All images were taken with a 

SMZ1800 stereomicroscope and the white scale bar represents 1mm. Use of microscope courtesy 

of Dr. M. Costea, Department of Biology, Wilfrid Laurier University.  
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 Table 3.3: Symbiotic status of native plants randomly collected from the SRC sites and of 

trap plants that had been grown using non-sterile SRC (preliminary trial: P-NOST; main trials: 

NOST) in the growth room at Wilfrid Laurier University. For both mycorrhizal (Myc) and 

nitrogen-fixing symbioses (Nod), the symbiotic status of plants is given as the number of plants 

colonized by the appropriate micro-symbiont over the total number of plants examined.  

 

 Growth/Collection details Symbiotic colonization 

Plant type Location Date collected Myc Nod 

Poaceae ssp. SRC deposit Aug 12/2014 1/1 NA 

Poaceae ssp. SRC deposit June 25/2015 1/1 NA 

Comptonia peregrina  SRC deposit Aug 12/2014 1/1 1/1 

Comptonia peregrina  SRC deposit June 25/2015 1/1 1/1 

Picea abies SRC deposit Aug 12/2014 1/1 NA 

Melilotus alba  SRC deposit Aug 12/2014 0/1 1/1 

Melilotus alba  SRC storage pile June 25/2015 0/1 1/1 

P-NOST treatment group Growth room NA 0/6 6/6 

NOST treatment group Growth room NA 0/20 15/20 
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Figure 3.3: Photographs depicting root symbioses on roots of plants collected from the SRC 

mine. Mycorrhizal fungi (here stained blue) were found to be colonizing most of the collected 

plants, such as Comptonia peregrina (a) and Poaceae grass (b). Two kinds of nodules were also 

seen in collected plants: Actinorhizal nodules were observed on roots of C. peregrina (c), and 

rhizobial nodules on the roots of Melilotus alba (d). Photographs in c) and d) courtesy of Rajaa 

Alshikhy.              
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Section 4: Discussion 

 The two objectives of this study were to establish if packaged SRC contains viable root 

symbionts, and to determine if these microorganisms are lost between the harvesting and the sale 

of SRC. To accomplish this, pea plants were used as a trap for mycorrhizal fungi and rhizobia 

from non-sterile SRC. The colonization of these trap plants was assessed and characterized, and 

was compared to the colonization of plants that were collected from the SRC mine. The results 

obtained here indicate that packaged SRC does contain viable beneficial microorganisms which 

may be negatively affected by storage conditions, thus confirming our hypothesis regarding SRC 

storage. Compared to the various well-colonized plant species that were growing directly on the 

exposed SRC deposit, pea plants grown in the lab with non-sterile packaged SRC were 

inconsistently nodulated, were not colonized by mycorrhizal fungi, and had lower CFU/g soil 

than plants growing in soils with sterilized SRC. 

 

4.1 Inconsistent nodulation of trap plants  

 The size of the nodulation zone in plants grown with non-sterile SRC was similar to that 

reported for the P. sativum/R. leguminosarum combination (Macdonald 2011; Bollman and 

Vessey 2006), with the majority of nodules forming less than 20cm from the cotelydons 

(<12.5cm - Macdonald 2011; 14cm - Bollman and Vessey 2006), though the nodulation zone 

here was only roughly resolved in 10cm increments. The nodules on the root system of trap peas 

were few, exhibited an unusual morphology, and had a generally lighter colouration than those on 

plants inoculated with Rhizobium leguminosarum bv. viciae. Furthermore, they also displayed 

signs of early senescence (green/pale colour, no visible meristems). In contrast, the nodules on 

the preliminary trial plants were an order of magnitude more numerous, displayed the expected 

morphologies, and were much darker in colouration. It should be noted here that when the SRC 
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was delivered, several bags were frozen solid, though unfortunately no note was made of which 

bags these were.  

 Despite the slightly different conditions used, the simplest explanation for the divergence 

in nodulation characteristics seen between preliminary trap plants and the full trial plants is that 

viable rhizobia were originally present in SRC, but were lost during storage before delivery. Both 

high (30°C or greater, Evans et al. 1993) and low (4°C or lower, Meade et al. 1985) extremes of 

temperature can impact the viability of Rhizobium cells, and unfavourable storage conditions 

(e.g., being frozen solid) are a prime suspect in the decreased viability seen here. Two alternative 

explanations must be proposed, however, but I think they can be discounted. First, the plants 

given non-sterile SRC in the preliminary trial could have been contaminated by R. 

leguminosarum from other experiments running at the same time in the growth room. This is 

doubtful though as no plants given sterile SRC ever nodulated in any trial. Second, the 

ammonium nitrate used in the preliminary trial could have affected the nodule numbers, as 

nodulation in pea has been shown to be stimulated by addition of ammonia (Bollman and Vessey 

2006). However, in the 2006 study when ammonia was provided as ammonium nitrate, the 

number of nodules was not changed from the number seen on plants with no added nitrogen. 

Therefore, this possibility is also discounted. It is worth mentioning that atypical nodule 

morphologies have been reported when plants are associated with ineffective symbiotic partners, 

as seen with the Medicago truncatula /Sinorhizobium meliloti 1021 combination (Terpolilli et al. 

2008); the nodules there were smaller and paler than expected. The altered nodule types seen in 

my experiments here may therefore represent the attempts of less-efficient or incompatible 

rhizobia to partner with the trap plants. It has been well documented that in nature competition 

between different rhizobial strains for colonization of roots occurs (Dowling and Broughton 

1986; Triplett and Sadowsky 1992; Laguerre et al. 2003). Freezing of the SRC may have 

damaged the rhizobia most compatible with the trap plants, and left the less-compatible but more 
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cold-tolerant rhizobia behind to colonize the roots. Normally, rhizobia can be stored at both -20°C 

and -80°C in our lab without problems, but under more controlled conditions. Cultures that are 

stored at -20°C for the purposes of creating inoculant require only a few cells to survive, as 

subsamples of the frozen cultures are first grown up at 25°C before their use to inoculate plants. 

When stored at -80°C, glycerol is used as a cryoprotectant to prevent rupture of bacterial cells 

from the formation of ice crystals. 

 

4.2 Mycorrhizal colonization 

 Although present in nearly all collected plants, mycorrhizal fungi were never found in the 

roots of the trap pea plants grown with non-sterile SRC. Given the observed nodulation 

phenotype, it is tempting to conclude that excess cold during storage conditions is also 

responsible for the loss of viable mycorrhizal fungi. However, two points make adoption of this 

explanation unwise. First, mycorrhizal spores are known to be cold-tolerant, and have been 

shown to resist temperatures of at least -80°C (Varga et al. 2015). It is highly improbable that 

storage conditions ever exceeded or even matched -80°C, and therefore freezing of SRC seems 

unlikely to have affected mycorrhizal spore viability. However, the rate at which freezing 

occurred, the level of moisture in the soil, and the number of freeze/thaw cycles are potential 

factors that could make the above explanation more reasonable. Second, mycorrhizal fungi are 

obligate symbionts (Peterson et al. 2004), and long-term storage without the protection of a 

symbiotic partner may have left them vulnerable to other factors besides cold temperatures. 

Predation or parasitism by other soil microorganisms such as amoebae or chytrids (Fitter and 

Garbaye 1994) is one possibility. The SRC I obtained was still moist when it was used despite 

several weeks or months of my storing it at room temperature, and thus the conditions within the 

bag would be favourable for the growth of some microorganisms. Another possibility is that the 
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combined moist and warm conditions were detrimental to the survival of mycorrhizal spores; a 

negative effect of continual warm/moist temperatures on mycorrhizal spore viability has been 

reported by Lekberg and Koide (2008). I therefore propose that, in contrast to the cold 

temperatures that negatively affected rhizobia survival, it was the warm and moist conditions 

within bags of SRC that negatively affected mycorrhizal spore survival.  I am doubtful of the 

possibility of predation/parasitism by other microorganisms within SRC as no indications of these 

were ever observed in root segment slides. Interestingly, the notion that warm/moist temperatures 

negatively affect mycorrhizal viability is consistent with the observation from experiments in our 

lab that mycorrhizal fungi fare poorly when vermiculite is used as a soil medium for plants: plants 

are grown at 23°C and vermiculite is good at retaining moisture.    

 

4.3 Conclusions 

 Although the results of these initial exploratory experiments indicate that storage 

conditions may affect the viability of potentially beneficial microorganisms, the impact these 

microorganisms may have on plant growth with non-sterile SRC is still unclear. Despite this, it is 

recommended that the conditions under which SRC is stored are changed. Refrigeration of SRC 

packages at continual low (minimum 4°C) temperatures in a controlled environment would likely 

contribute to the greater survival of beneficial microorganisms. Both mycorrhizal fungi and 

rhizobia are beneficial to plants and therefore attempts should be made to preserve their presence 

in retail packages of SRC. A project aimed at characterizing the microorganisms within the soil at 

the SRC mine is already underway, and will build upon the results presented here to help clarify 

how microorganisms and SRC may together improve plant growth.    
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Chapter 4 - General conclusions 

 The overarching objective of this project was to assess the suitability of the agromineral 

Spanish River Carbonatite for use in agricultural systems by examining how it influences the 

growth and yield of pea plants, alters the soil conditions, and affects the microorganisms in the 

soil. This large objective was divided into three sub-objectives aimed at determining the optimal 

concentration of SRC for use, assessing the impact of SRC on the rhizobia-legume symbiosis, and 

investigating how the conditions under which SRC is stored affect its usefulness. These 

objectives were all achieved during the course of this project.  

 Regarding the first sub-objective, it was found that a mix of 1:10 SRC:soil was optimal 

for promoting root system growth, mediating potentially-acidic soils, and increasing the number 

of soil microorganisms. This ratio had been recommended by Boreal Agrominerals based on the 

stoichiometry of the mineral and here, it has been verified for best growth of plants.  Because 

only one concentration (1:10) proved optimal, the hypothesis that SRC positively impacts soils, 

microorganisms, and plants in a concentration-dependant manner is rejected. Regarding the 

second sub-objective, an increase in the efficiency of the rhizobial-legume symbiosis was seen 

with the 1:10 SRC:soil mixture as compared to the normal nutrient regime. Both nitrogen fixation 

efficiency and the photosynthesis/growth of plants appeared to benefit from SRC addition.  The 

hypothesis that SRC addition causes marked increases in the growth of nodulating plants is thus 

confirmed. Finally, regarding the third sub-objective, evidence for a loss of viability of beneficial 

soil microorganisms from storage of SRC was found. The hypothesis that SRC contains 

beneficial microorganisms that are negatively impacted by storage conditions is tentatively 

confirmed, although further studies on this topic are necessary. Therefore, based on the above 

findings, I conclude that SRC holds strong potential for direct use in agricultural systems. 

Furthermore, this study provides more evidence for the power of agrominerals as viable nutrient 



 

94 

 

sources, especially in combination with mutualistic soil microorganisms such as mycorrhizal 

fungi (Liu et al. 2008) or the rhizobia used here.  

 Agrominerals show great promise for use in the agriculture of developing countries (van 

Straaten 2007, p. 6-7). The costs of chemical fertilizers can be limiting in these countries, and 

more cost-efficient agromineral resources have the demonstrated ability to maintain or improve 

crop plant growth in conjunction with other techniques (e.g., Chien and Menon 1995).  However, 

the soil processes that may be enhanced by agrominerals must always be kept in mind. 

Understandably, the end goal is the maintenance or improvement of crop plant growth, but as 

emphasized in the introduction, several interconnected processes work together to support plant 

growth. In order to take full advantage of SRC, agrominerals, and other agricultural techniques, a 

multidisciplinary and multi-perspective approach must be taken. In this project the addition of a 

single ingredient, SRC, to the artificial soil produced effects on several processes throughout the 

agropyramid mentioned in the introduction (Figure 1.1).  

 The additional calcium provided by SRC helped buffer the soils against acidic conditions 

that could impact nutrient availability, as evidenced by the soil pH.  

 

 The increase in root growth caused by SRC indirectly made carbon available for soil 

microorganisms to flourish, as seen in the 1:10 treatment CFU counts.  

 

 The soil conditions, made more optimal than those of the control soils by the addition of 

SRC, allowed for increased nodulation and plant growth as demonstrated when plants were given 

both rhizobial inoculant and SRC.  

 

 Only by examining the microorganisms, the soils, and the plants together were these 

interconnected benefits made clear. To fully realize the potential of agrominerals and other 
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techniques that can improve agriculture, this integrated approach must be mirrored on a larger 

scale. Those scientists with a strong knowledge of soil systems must work together with those 

who understand microorganism ecology and those who are familiar with plant growth.  

Furthermore, the industrialists who discover and mine agrominerals must work together with both 

the aforementioned scientists and the farmers who use these agrominerals. Only through a 

synchronized effort can a new perspective be seen. Perhaps what should be done is an inversion 

of our perspective of the agropyramid (Figure 4.1) to focus on soils as a foundation. By using a 

bottom-up approach that takes advantage of techniques and ingredients that optimize the soil 

processes instead of using a top-down approach that focuses on plant growth, this new 

perspective will reveal innovations that allow for truly sustainable agriculture to become a reality.  
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Figure 4.1: A new perspective: the levels (I-IV) on which we focused have been reversed from 

those in Figure 1.1 (IV-I). Instead of focusing on plant growth directly, emphasis should first be 

placed on the interconnected processes that work to support plant growth. Improvements to these 

processes would not only make agriculture more sustainable, but would initiate a cascade effect 

that would enhance plant growth and yield overall.  
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Appendices 

Appendix A: Nutrient solution and yeast mannitol broth compositions. 

 Table A1: Chemical composition of nutrient solutions and yeast mannitol broth. Low 

nitrogen solution is chemically identical to nutrient solution with the exception of only 0.5mM 

added Na(CO3)2 instead of 2.5mM. Yeast-mannitol broth was made to pH 6.8, and autoclaved 

prior to use.  

 

Nutrient Solution  

Chemical Concentration (mM) 

KH2PO4 2 

Ca(NO3)2*4H2O 2.5 (0.5 in low N) 

K2SO4 2 

MgSO4*7H2O 1 

Fe II EDTA 0.2 

KCl 0.05 

H3BO3 0.025 

ZnSO4*7H2O 0.002 

MnSO4*H2O 0.002 

CuSO4*5H2O 0.0005 

NaMoO4*2H2O 0.0005 

  

Yeast Mannitol Broth  

Chemical Amount (g/100mL) 

D-Mannitol 1 

K2HPO4 0.05 

MgSO4*7H2O 0.02 

NaCl 0.01 

Yeast Extract 0.04 

pH 6.8 
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Appendix B: Model for branching in pea induced by the photocatalytic degradation of 

polyethylene 

 Polyethylene is catalytically degraded by light (Zhao et al. 2007), and the release of 

gaseous degradation products such as carbon dioxide or ethylene likely affected seedling growth.. 

Carbon dioxide has a higher molar mass than air (44.01g m
-1

 vs. 28.97g m
-1

), so liberated 

molecules form a pool at the soil surface (Figure B1a). Ethylene has approximately the same 

molar mass as air, and so would be homogenously spread via diffusion. The emerging apical 

meristem encounters both gases (Figure B1b), but while ethylene is known to have an inhibitory 

effect on cell division (Apelbaum and Burg 1972) and bud growth (Burg and Burg 1968), carbon 

dioxide promotes plant growth (Pritchard et al. 1999) and lateral bud development (Andersen 

1976; Paez et al. 1980). Because in this stage, the carbon dioxide levels encountered by the shoot 

apical meristem are expected to be much higher than ethylene, any inhibitory effect of ethylene 

on growth is likely mitigated through the promotion of growth by carbon dioxide. However, once 

the apical meristem passes the carbon dioxide-rich region (Figure B1c), ethylene may act to 

inhibit cell division in the shoot apical meristem. At the same time, the auxiliary meristems would 

then be forming in the carbon dioxide-rich region and be subjected to growth promotion. Apical 

dominance is thus reduced because of carbon dioxide-induced promotion of auxiliary bud growth 

and ethylene-based inhibition of apical meristem growth; this results in a branched phenotype 

(Figure B1d). 
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Figure B1: Model for the effect of CO2 and C2H4 gasses released by photocatalytic degradation of 

polyethylene on seedling pea plant growth. a) Degradation of polyethylene releases C2H4 and 

CO2. b) As the seed (S) puts out a primary root (PR) and develops into a seedling, its shoot apical 

meristem (SAM) is brought into a CO2-rich region by the growth of the epicotyl hook (EH). c) 

With the further growth of the seedling, the SAM is brought out of the CO2-rich region while 

auxiliary buds (AB) are developed within it. d) The temporal and spatial effects of the 

degradation products of polyethylene induce a branching phenotype, where two additional nodes 

develop off of node 2.  
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